Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 15, Number 5—May 2009
Research

New Respiratory Enterovirus and Recombinant Rhinoviruses among Circulating Picornaviruses

Caroline Tapparel1Comments to Author , Thomas Junier1, Daniel Gerlach, Sandra Van Belle, Lara Turin, Samuel Cordey, Kathrin Mühlemann, Nicolas Regamey, John-David Aubert, Paola M. Soccal, Philippe Eigenmann, Evgeny M. Zdobnov1, and Laurent Kaiser1
Author affiliations: University of Geneva Hospitals, Geneva, Switzerland (C. Tapparel, S. Van Belle, L. Turin, S. Cordey, P. M. Soccal, P. Eigenmann, L. Kaiser); University of Geneva Medical School, Geneva (C. Tapparel, T. Junier, D. Gerlach, S. Van Belle, L. Turin, S. Cordey, E. Zdobnov, L. Kaiser); Swiss Institute of Bioinformatics, Geneva (T. Junier, D. Gerlach, E. Zdobnov); University Hospital of Bern, Bern, Switzerland (K. Mühlemann, N. Regamey); University Hospital of Lausanne, Lausanne, Switzerland (J.-D. Aubert); Imperial College London, London, UK (E. Zdobnov); 1These authors contributed equally to this article.

Main Article

Figure 1

5′ untranslated region (A), capsid protein VP1 (B), and complete genome (C) phylogeny of the virus clades studied. Trees were produced by condensing the full phylogeny shown in Technical Appendix 2 Figure 1, panels A, B, and D. Human rhinovirus C′ (HRV-C′) includes the divergent rhinoviruses described in 2007 (13) and a related clinical strain (CL-Fnp5). HRV-C includes the new clade described since 2006 (9–14,16). Enterovirus 104 (EV-104) and the related strain CL-1231094 refer to a previously u

Figure 1. 5′ untranslated region (A), capsid protein VP1 (B), and complete genome (C) phylogeny of the virus clades studied. Trees were produced by condensing the full phylogeny shown in Technical Appendix 213) and a related clinical strain (CL-Fnp5). HRV-C includes the new clade described since 2006 (914,16). Enterovirus 104 (EV-104) and the related strain CL-1231094 refer to a previously unknown enterovirus clade described in this study. In panel C, HRV-C′ is shown in brackets to indicate its expected location (based on VP1 and 3D sequences). Simian picornavirus 1 (SV2) was used as an outgroup. HEV, human enterovirus. Bootstrap support values <50 are not shown in the trees. New viruses are shown in boldface.

Main Article

References
  1. Tapparel  C, Junier  T, Gerlach  D, Cordey  S, Van Belle  S, Perrin  L, New complete genome sequences of human rhinoviruses shed light on their phylogeny and genomic features. BMC Genomics. 2007;8:224. DOIPubMedGoogle Scholar
  2. Newcombe  NG, Andersson  P, Johansson  ES, Au  GG, Lindberg  AM, Barry  RD, Cellular receptor interactions of C-cluster human group A coxsackieviruses. J Gen Virol. 2003;84:304150. DOIPubMedGoogle Scholar
  3. Pulli  T, Koskimies  P, Hyypia  T. Molecular comparison of coxsackie A virus serotypes. Virology. 1995;212:308. DOIPubMedGoogle Scholar
  4. Dufresne  AT, Gromeier  M. A nonpolio enterovirus with respiratory tropism causes poliomyelitis in intercellular adhesion molecule 1 transgenic mice. Proc Natl Acad Sci U S A. 2004;101:1363641. DOIPubMedGoogle Scholar
  5. Oberste  MS, Maher  K, Schnurr  D, Flemister  MR, Lovchik  JC, Peters  H, Enterovirus 68 is associated with respiratory illness and shares biological features with both the enteroviruses and the rhinoviruses. J Gen Virol. 2004;85:257784. DOIPubMedGoogle Scholar
  6. Ledford  RM, Patel  NR, Demenczuk  TM, Watanyar  A, Herbertz  T, Collett  MS, VP1 sequencing of all human rhinovirus serotypes: insights into genus phylogeny and susceptibility to antiviral capsid-binding compounds. J Virol. 2004;78:366374. DOIPubMedGoogle Scholar
  7. Laine  P, Blomqvist  S, Savolainen  C, Andries  K, Hovi  T. Alignment of capsid protein VP1 sequences of all human rhinovirus prototype strains: conserved motifs and functional domains. J Gen Virol. 2006;87:12938. DOIPubMedGoogle Scholar
  8. Savolainen  C, Blomqvist  S, Mulders  MN, Hovi  T. Genetic clustering of all 102 human rhinovirus prototype strains: serotype 87 is close to human enterovirus 70. J Gen Virol. 2002;83:33340.PubMedGoogle Scholar
  9. Arden  KE, McErlean  P, Nissen  MD, Sloots  TP, Mackay  IM. Frequent detection of human rhinoviruses, paramyxoviruses, coronaviruses, and bocavirus during acute respiratory tract infections. J Med Virol. 2006;78:123240. DOIPubMedGoogle Scholar
  10. Kistler  A, Avila  PC, Rouskin  S, Wang  D, Ward  T, Yagi  S, Pan-viral screening of respiratory tract infections in adults with and without asthma reveals unexpected human coronavirus and human rhinovirus diversity. J Infect Dis. 2007;196:81725. DOIPubMedGoogle Scholar
  11. Lamson  D, Renwick  N, Kapoor  V, Liu  Z, Palacios  G, Ju  J, MassTag polymerase-chain-reaction detection of respiratory pathogens, including a new rhinovirus genotype, that caused influenza-like illness in New York State during 2004–2005. J Infect Dis. 2006;194:1398402. DOIPubMedGoogle Scholar
  12. Lau  SK, Yip  CC, Tsoi  HW, Lee  RA, So  LY, Lau  YL, Clinical features and complete genome characterization of a distinct human rhinovirus (HRV) genetic cluster, probably representing a previously undetected HRV species, HRV-C, associated with acute respiratory illness in children. J Clin Microbiol. 2007;45:365564. DOIPubMedGoogle Scholar
  13. Lee  WM, Kiesner  C, Pappas  T, Lee  I, Grindle  K, Jartti  T, A diverse group of previously unrecognized human rhinoviruses are common causes of respiratory illnesses in infants. PLoS One. 2007;2:e966. DOIPubMedGoogle Scholar
  14. McErlean  P, Shackelton  LA, Lambert  SB, Nissen  MD, Sloots  TP, Mackay  IM. Characterisation of a newly identified human rhinovirus, HRV-QPM, discovered in infants with bronchiolitis. J Clin Virol. 2007;39:6775. DOIPubMedGoogle Scholar
  15. McErlean  P, Shackelton  LA, Andrews  E, Webster  DR, Lambert  SB, Nissen  MD, Distinguishing molecular features and clinical characteristics of a putative new rhinovirus species, human rhinovirus C (HRV C). PLoS One. 2008;3:e1847.
  16. Renwick  N, Schweiger  B, Kapoor  V, Liu  Z, Villari  J, Bullmann  R, A recently identified rhinovirus genotype is associated with severe respiratory-tract infection in children in Germany. J Infect Dis. 2007;196:175460. DOIPubMedGoogle Scholar
  17. Cordey  S, Gerlach  D, Junier  T, Zdobnov  EM, Kaiser  L, Tapparel  C. The cis-acting replication elements define human enterovirus and rhinovirus species. RNA. 2008;14:156878. DOIPubMedGoogle Scholar
  18. Savolainen  C, Laine  P, Mulders  MN, Hovi  T. Sequence analysis of human rhinoviruses in the RNA-dependent RNA polymerase coding region reveals large within-species variation. J Gen Virol. 2004;85:22717. DOIPubMedGoogle Scholar
  19. Deffernez  C, Wunderli  W, Thomas  Y, Yerly  S, Perrin  L, Kaiser  L. Amplicon sequencing and improved detection of human rhinovirus in respiratory samples. J Clin Microbiol. 2004;42:32128. DOIPubMedGoogle Scholar
  20. Regamey  N, Kaiser  L, Roiha  HL, Deffernez  C, Kuehni  CE, Latzin  P, Viral etiology of acute respiratory infections with cough in infancy: a community-based birth cohort study. Pediatr Infect Dis J. 2008;27:1005.PubMedGoogle Scholar
  21. Garbino  J, Gerbase  MW, Wunderli  W, Deffernez  C, Thomas  Y, Rochat  T, Lower respiratory viral illnesses: improved diagnosis by molecular methods and clinical impact. Am J Respir Crit Care Med. 2004;170:1197203. DOIPubMedGoogle Scholar
  22. Kronenberg  A, Zucs  P, Droz  S, Muhlemann  K. Distribution and invasiveness of Streptococcus pneumoniae serotypes in Switzerland, a country with low antibiotic selection pressure, from 2001 to 2004. J Clin Microbiol. 2006;44:20328. DOIPubMedGoogle Scholar
  23. Allander  T, Tammi  MT, Eriksson  M, Bjerkner  A, Tiveljung-Lindell  A, Andersson  B. Cloning of a human parvovirus by molecular screening of respiratory tract samples. Proc Natl Acad Sci U S A. 2005;102:128916. DOIPubMedGoogle Scholar
  24. Edgar  RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:17927. DOIPubMedGoogle Scholar
  25. Rice  P, Longden  I, Bleasby  A. EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet. 2000;16:2767. DOIPubMedGoogle Scholar
  26. Guindon  S, Gascuel  O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol. 2003;52:696704. DOIPubMedGoogle Scholar
  27. Salminen  MO, Carr  JK, Burke  DS, McCutchan  FE. Identification of breakpoints in intergenotypic recombinants of HIV type 1 by bootscanning. AIDS Res Hum Retroviruses. 1995;11:14235. DOIPubMedGoogle Scholar
  28. Garbino  J, Soccal  PM, Aubert  JD, Rochat  T, Meylan  P, Thomas  Y, Respiratory viruses in bronchoalveolar lavage: a hospital-based cohort study in adults. Thorax. 2009; [Epub ahead of print].
  29. Brown  B, Oberste  MS, Maher  K, Pallansch  MA. Complete genomic sequencing shows that polioviruses and members of human enterovirus species C are closely related in the noncapsid coding region. J Virol. 2003;77:897384. DOIPubMedGoogle Scholar
  30. Nix  WA, Oberste  MS, Pallansch  MA. Sensitive, seminested PCR amplification of VP1 sequences for direct identification of all enterovirus serotypes from original clinical specimens. J Clin Microbiol. 2006;44:2698704. DOIPubMedGoogle Scholar
  31. Kistler  AL, Webster  DR, Rouskin  S, Magrini  V, Credle  JJ, Schnurr  DP, Genome-wide diversity and selective pressure in the human rhinovirus. Virol J. 2007;4:40. DOIPubMedGoogle Scholar
  32. Simmonds  P. Recombination and selection in the evolution of picornaviruses and other mammalian positive-stranded RNA viruses. J Virol. 2006;80:1112440. DOIPubMedGoogle Scholar
  33. Smura  T, Blomqvist  S, Paananen  A, Vuorinen  T, Sobotova  Z, Bubovica  V, Enterovirus surveillance reveals proposed new serotypes and provides new insight into enterovirus 5′-untranslated region evolution. J Gen Virol. 2007;88:25206. DOIPubMedGoogle Scholar
  34. Oberste  MS, Maher  K, Michele  SM, Belliot  G, Uddin  M, Pallansch  MA. Enteroviruses 76, 89, 90 and 91 represent a novel group within the species Human enterovirus A. J Gen Virol. 2005;86:44551. DOIPubMedGoogle Scholar
  35. Junttila  N, Leveque  N, Kabue  JP, Cartet  G, Mushiya  F, Muyembe-Tamfum  JJ, New enteroviruses, EV-93 and EV-94, associated with acute flaccid paralysis in the Democratic Republic of the Congo. J Med Virol. 2007;79:393400. DOIPubMedGoogle Scholar
  36. Norder  H, Bjerregaard  L, Magnius  L, Lina  B, Aymard  M, Chomel  JJ. Sequencing of ‘untypable’ enteroviruses reveals two new types, EV-77 and EV-78, within human enterovirus type B and substitutions in the BC loop of the VP1 protein for known types. J Gen Virol. 2003;84:82736. DOIPubMedGoogle Scholar
  37. Witso  E, Palacios  G, Cinek  O, Stene  LC, Grinde  B, Janowitz  D, High prevalence of human enterovirus a infections in natural circulation of human enteroviruses. J Clin Microbiol. 2006;44:4095100. DOIPubMedGoogle Scholar
  38. Jiang  P, Faase  JA, Toyoda  H, Paul  A, Wimmer  E, Gorbalenya  AE. Evidence for emergence of diverse polioviruses from C-cluster coxsackie A viruses and implications for global poliovirus eradication. Proc Natl Acad Sci U S A. 2007;104:945762. DOIPubMedGoogle Scholar
  39. Domingo  E, Martin  V, Perales  C, Escarmis  C. Coxsackieviruses and quasispecies theory: evolution of enteroviruses. Curr Top Microbiol Immunol. 2008;323:332. DOIPubMedGoogle Scholar
  40. Lukashev  AN. Role of recombination in evolution of enteroviruses. Rev Med Virol. 2005;15:15767. DOIPubMedGoogle Scholar

Main Article

Page created: December 16, 2010
Page updated: December 16, 2010
Page reviewed: December 16, 2010
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external