Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 16, Number 6—June 2010
Research

Evolution of Northeastern and Midwestern Borrelia burgdorferi, United States

Dustin BrissonComments to Author , Mary F. Vandermause, Jennifer K. Meece, Kurt D. Reed, and Daniel E. Dykhuizen
Author affiliations: University of Pennsylvania, Philadelphia, Pennsylvania, USA (D. Brisson); Marshfield Clinic Research Foundation, Marshfield, Wisconsin, USA (M.F. Vandermause, J.K. Meece); Northwestern University/Feinberg School of Medicine, Chicago, Illinois, USA (K.D. Reed); Stony Brook University, Stony Brook, New York, USA (D.E. Dykhuizen)

Main Article

Table 2

Summary of Shimodaira-Hasegawa test results of potential horizontal gene transfer events in Borrelia burgdorferi, midwestern and northeastern United States*

Test comparison Data set Δ lnL p value
ospAB vs.
IGS ospAB 8.50709 0.390
ospAB/ospC
ospAB
21.26004
0.313
IGS vs.
ospAB IGS 642.826545 <0.0001
IGS/ospC IGS 67.53033 0.006
IGS/ospC
IGS
388.21228
<0.0001
ospB vs. ospB/ospC ospB 18.91326 0.338
ospA vs. ospA/ospC ospA 45.30135 0.146
ospA vs. ospA/ospC ospA 79.62589 0.080

*Δ InL, difference in log-likelihood; osp, outer surface protein; IGS, intergenic spacer.
†Included sequence data from Bunikis et al. (10).

Main Article

References
  1. Bacon  RM, Kugeler  KJ, Mead  PS. Surveillance for Lyme disease—United States, 1992–2006. MMWR Surveill Summ. 2008;57:19.PubMedGoogle Scholar
  2. Burgdorfer  W, Barbour  AG, Hayes  SF, Benach  JL, Grunwaldt  E, Davis  JP. Lyme disease—a tick-borne spirochetosis. Science. 1982;216:13179. DOIPubMedGoogle Scholar
  3. Gatewood  AG, Liebman  KA, Vourc’h  G, Bunikis  J, Hamer  SA, Cortinas  R, Climate and tick seasonality are predictors of Borrelia burgdorferi genotype distribution. Appl Environ Microbiol. 2009;75:247683. DOIPubMedGoogle Scholar
  4. Brisson  D, Dykhuizen  DE. ospC diversity in Borrelia burgdorferi: different hosts are different niches. Genetics. 2004;168:71322. DOIPubMedGoogle Scholar
  5. Caporale  DA, Johnson  CM, Millard  BJ. Presence of Borrelia burgdorferi (Spirochaetales: Spirochaetaceae) in southern Kettle Moraine State Forest, Wisconsin, and characterization of strain W97F51. J Med Entomol. 2005;42:45772. DOIPubMedGoogle Scholar
  6. Diuk-Wasser  MA, Gatewood  AG, Cortinas  MR, Yaremych-Hamer  S, Tsao  J, Kitron  U, Spatiotemporal patterns of host-seeking Ixodes scapularis nymphs (Acari: Ixodidae) in the United States. J Med Entomol. 2006;43:16676. DOIPubMedGoogle Scholar
  7. Qiu  WG, Dykhuizen  DE, Acosta  MS, Luft  BJ. Geographic uniformity of the Lyme disease spirochete (Borrelia burgdorferi) and its shared history with tick vector (Ixodes scapularis) in the northeastern United States. Genetics. 2002;160:83349.PubMedGoogle Scholar
  8. Humphrey  PT, Caporale  DA, Brisson  D. Uncoordinated biogeography of the Lyme disease pathogen, Borrelia burgdorferi, and its tick vector, Ixodes scapularis. Evolution. 2010. In press. DOIPubMedGoogle Scholar
  9. Qiu  WG, Schutzer  SE, Bruno  JF, Attie  O, Xu  Y, Dunn  JJ, Genetic exchange and plasmid transfers in Borrelia burgdorferi sensu stricto revealed by three-way genome comparisons and multilocus sequence typing. Proc Natl Acad Sci U S A. 2004;101:141505. DOIPubMedGoogle Scholar
  10. Bunikis  J, Tsao  J, Berglund  J, Fish  D, Barbour  AG. Sequence typing reveals extensive strain diversity of the Lyme borreliosis agents Borrelia burgdorferi in North America and Borrelia afzelii in Europe. Microbiology. 2004;150:174155. DOIPubMedGoogle Scholar
  11. Dykhuizen  DE, Polin  DS, Dunn  JJ, Wilske  B, Preac-Mursic  V, Dattwyler  RJ, Borrelia burgdorferi is clonal: implications for taxonomy and vaccine development. Proc Natl Acad Sci U S A. 1993;90:101637. DOIPubMedGoogle Scholar
  12. Attie  O, Bruno  JF, Xu  Y, Qiu  D, Luft  BJ, Qiu  WG. Co-evolution of the outer surface protein C gene (ospC) and intraspecific lineages of Borrelia burgdorferi sensu stricto in the northeastern United States. Infect Genet Evol. 2007;7:112. DOIPubMedGoogle Scholar
  13. Dykhuizen  DE, Baranton  G. The implications of a low rate of horizontal transfer in Borrelia. Trends Microbiol. 2001;9:34450. DOIPubMedGoogle Scholar
  14. Guttman  DS, Wang  PW, Wang  IN, Bosler  EM, Luft  BJ, Dykhuizen  DE. Multiple infections of Ixodes scapularis ticks by Borrelia burgdorferi as revealed by single-strand conformation polymorphism analysis. J Clin Microbiol. 1996;34:6526.PubMedGoogle Scholar
  15. Casjens  S, Palmer  N, van Vugt  R, Huang  WM, Stevenson  B, Rosa  P, A bacterial genome in flux: the twelve linear and nine circular extrachromosomal DNAs in an infectious isolate of the Lyme disease spirochete Borrelia burgdorferi. Mol Microbiol. 2000;35:490516. DOIPubMedGoogle Scholar
  16. Stevenson  B, Miller  JC. Intra- and interbacterial genetic exchange of Lyme disease spirochete erp genes generates sequence identity amidst diversity. J Mol Evol. 2003;57:30924. DOIPubMedGoogle Scholar
  17. Zhang  J-R, Norris  SJ. Genetic variation of the Borrelia burgdorferi gene vlsE involves cassette-specific, segmental gene conversion. Infect Immun. 1998;66:3698704.PubMedGoogle Scholar
  18. Shimodaira  H, Hasegawa  M. Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Mol Biol Evol. 1999;16:11146.
  19. Wormser  GP, Liveris  D, Nowakowski  J, Nadelman  RB, Cavaliere  LF, McKenna  D, Association of specific subtypes of Borrelia burgdorferi with hematogenous dissemination in early Lyme disease. J Infect Dis. 1999;180:7205. DOIPubMedGoogle Scholar
  20. Caporale  DA, Kocher  TD. Sequence variation in the outer-surface-protein genes of Borrelia burgdorferi. Mol Biol Evol. 1994;11:5164.PubMedGoogle Scholar
  21. Thompson  JD, Higgins  DG, Gibson  TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994;22:467380. DOIPubMedGoogle Scholar
  22. Rozas  J, Rozas  R. DnaSP version 3: an integrated program for molecular population genetics and molecular evolution analysis. Bioinformatics. 1999;15:1745. DOIPubMedGoogle Scholar
  23. Jolley  KA, Feil  EJ, Chan  MS, Maiden  MC. Sequence type analysis and recombinational tests (START). Bioinformatics. 2001;17:12301. DOIPubMedGoogle Scholar
  24. Sawyer  S. Statistical tests for detecting gene conversion. Mol Biol Evol. 1989;6:52638.PubMedGoogle Scholar
  25. Smith  JM. Analyzing the mosaic structure of genes. J Mol Evol. 1992;34:1269. DOIPubMedGoogle Scholar
  26. Smith  JM, Smith  NH, O’Rourke  M, Spratt  BG. How clonal are bacteria? Proc Natl Acad Sci U S A. 1993;90:43848. DOIPubMedGoogle Scholar
  27. Seinost  G, Dykhuizen  DE, Dattwyler  RJ, Golde  WT, Dunn  JJ, Wang  IN, Four clones of Borrelia burgdorferi sensu stricto cause invasive infection in humans. Infect Immun. 1999;67:351824.PubMedGoogle Scholar
  28. Dykhuizen  DE, Brisson  D, Sandigursky  S, Wormser  GP, Nowakowski  J, Nadelman  RB, The propensity of different Borrelia burgdorferi sensu stricto genotypes to cause disseminated infections in humans. Am J Trop Med Hyg. 2008;78:80610.PubMedGoogle Scholar
  29. Posada  D, Crandall  KA. MODELTEST: testing the model of DNA substitution. Bioinformatics. 1998;14:8178. DOIPubMedGoogle Scholar
  30. Wormser  GP, Brisson  D, Liveris  D, Hanincová  K, Sandigursky  S, Nowakowski  J, Borrelia burgdorferi genotype predicts the capacity for hematogenous dissemination during early Lyme disease. J Infect Dis. 2008;198:135864. DOIPubMedGoogle Scholar
  31. Liveris  D, Wormser  GP, Nowakowski  J, Nadelman  R, Bittker  S, Cooper  D, Molecular typing of Borrelia burgdorferi from Lyme disease patients by PCR-restriction fragment length polymorphism analysis. J Clin Microbiol. 1996;34:13069.PubMedGoogle Scholar
  32. Livey  I, Gibbs  CP, Schuster  R, Dorner  F. Evidence for lateral transfer and recombination in OspC variation in Lyme disease Borrelia. Mol Microbiol. 1995;18:25769. DOIPubMedGoogle Scholar
  33. Ragan  MA. Detection of lateral gene transfer among microbial genomes. Curr Opin Genet Dev. 2001;11:6206. DOIPubMedGoogle Scholar
  34. Wang  G, Ojaimi  C, Wu  H, Saksenberg  V, Iyer  R, Liveris  D, Disease severity in a murine model of Lyme borreliosis is associated with the genotype of the infecting Borrelia burgdorferi sensu stricto strain. J Infect Dis. 2002;186:78291. DOIPubMedGoogle Scholar
  35. Cromley  EK, Cartter  ML, Mrozinski  RD, Ertel  SH. Residential setting as a risk factor for Lyme disease in a hyperendemic region. Am J Epidemiol. 1998;147:4727.PubMedGoogle Scholar
  36. Brisson  D, Dykhuizen  DE. A modest model explains the distribution and abundance of Borrelia burgdorferi strains. Am J Trop Med Hyg. 2006;74:61522.PubMedGoogle Scholar
  37. Brisson  D, Dykhuizen  DE, Ostfeld  RS. Conspicuous impacts of inconspicuous hosts on the Lyme disease epidemic. Proc Biol Sci. 2008;275:22735. DOIPubMedGoogle Scholar

Main Article

Page created: February 07, 2011
Page updated: February 07, 2011
Page reviewed: February 07, 2011
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external