Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 18, Number 1—January 2012
Dispatch

Mutations I117V and I117M and Oseltamivir Sensitivity of Pandemic (H1N1) 2009 Viruses

Aeron C. HurtComments to Author , Sook Kwan Leang, David J. Speers, Ian Barr, and Sebastian Maurer-Stroh
Author affiliations: World Health Organization Collaborating Centre for Reference and Research on Influenza, North Melbourne, Victoria, Australia (A.C. Hurt, S.K. Leang, I.G. Barr); PathWest Laboratory Medicine, Nedlands, Western Australia, Australia (D.J. Speers); Agency for Science, Technology and Research, Singapore (S. Maurer-Stroh); Ministry of Health, Singapore (S. Maurer-Stroh); Nanyang Technological University, Singapore (S. Maurer-Stroh)

Main Article

Figure 1

Figure 1. Structural details of neuraminidase mutations from pandemic (H1N1) 2009 viruses. A) Wildtype mutation I117 (green). B) mutation I117V (red). C) I117M (blue). All were modeled with FoldX (11) in YASARA (12) in the context of the pandemic (H1N1) 2009 virus neuraminidase crystal structure (Protein Data Bank: 3nss). Side chains of residues <3 Å of residue 117 are shown as sticks. Cavities within the structure (1.4 Å radius water probe) are shown in magenta.

Main Article

References
  1. Hurt  AC, Lee  R, Leang  S, Cui  L, Deng  Y, Phuah  S, Increased detection in Australia and Singapore of a novel influenza A(H1N1)2009 variant with reduced oseltamivir and zanamivir sensitivity due to a S247N neuraminidase mutation. Euro Surveill. 2011;16:pii:19884.
  2. Santos  L, Correia  V, Giria  M, Pedro  S, Santos  M, Silvestre  M, Genetic and antiviral drug susceptbility profiles of pandemic A(H1N1)v influenza virus circulating in Portugal. In: Proceedings of Options for the Control of Influenza VII, Hong Kong, SAR, China, September 1–3, 2010. Atlanta (GA): Intregress; 2010. Abstract no. O-851.
  3. van der Vries  E, Stelma  FF, Boucher  CA. Emergence of a multidrug-resistant pandemic influenza A (H1N1) virus. N Engl J Med. 2010;363:13812. DOIPubMedGoogle Scholar
  4. Yi  H, Lee  JY, Hong  EH, Kim  MS, Kwon  D, Choi  JH, Oseltamivir-resistant pandemic (H1N1) 2009 virus, South Korea. Emerg Infect Dis. 2010;16:193842.PubMedGoogle Scholar
  5. Shin  SY, Kang  C, Gwack  J, Kim  JH, Kim  HS, Kang  YA, Drug-resistant pandemic (H1N1) 2009, South Korea. Emerg Infect Dis. 2011;17:7024.PubMedGoogle Scholar
  6. Hurt  AC, Selleck  P, Komadina  N, Shaw  R, Brown  L, Barr  IG. Susceptibility of highly pathogenic A(H5N1) avian influenza viruses to the neuraminidase inhibitors and adamantanes. Antiviral Res. 2007;73:22831. DOIPubMedGoogle Scholar
  7. Ilyushina  NA, Seiler  JP, Rehg  JE, Webster  RG, Govorkova  EA. Effect of neuraminidase inhibitor–resistant mutations on pathogenicity of clade 2.2 A/Turkey/15/06 (H5N1) influenza virus in ferrets. PLoS Pathog. 2010;6:e1000933. DOIPubMedGoogle Scholar
  8. Hurt  AC, Holien  JK, Parker  M, Barr  IG. Oseltamivir resistance and the H274Y neuraminidase mutation in seasonal, pandemic and highly pathogenic influenza viruses. Drugs. 2009;69:252331. DOIPubMedGoogle Scholar
  9. Hurt  AC, Holien  JK, Barr  IG. In vitro generation of neuraminidase inhibitor resistance in A(H5N1) influenza viruses. Antimicrob Agents Chemother. 2009;53:443340. DOIPubMedGoogle Scholar
  10. Hurt  AC, Barr  IG, Hartel  G, Hampson  AW. Susceptibility of human influenza viruses from Australasia and South East Asia to the neuraminidase inhibitors zanamivir and oseltamivir. Antiviral Res. 2004;62:3745. DOIPubMedGoogle Scholar
  11. Van Durme  J, Delgado  J, Stricher  F, Serrano  L, Schymkowitz  J, Rousseau  F. A graphical interface for the FoldX forcefield. Bioinformatics. 2011;27:17112. DOIPubMedGoogle Scholar
  12. Krieger  E, Koraimann  G, Vriend  G. Increasing the precision of comparative models with YASARA NOVA—a self-parameterizing force field. Proteins. 2002;47:393402. DOIPubMedGoogle Scholar
  13. Li  Q, Qi  J, Zhang  W, Vavricka  CJ, Shi  Y, Wei  J, The 2009 pandemic H1N1 neuraminidase N1 lacks the 150-cavity in its active site. Nat Struct Mol Biol. 2010;17:12668. DOIPubMedGoogle Scholar
  14. Peng  AW, Milleri  S, Stein  DS. Direct measurement of the anti-influenza agent zanamivir in the respiratory tract following inhalation. Antimicrob Agents Chemother. 2000;44:19746. DOIPubMedGoogle Scholar
  15. He  G, Massarella  J, Ward  P. Clinical pharmacokinetics of the prodrug oseltamivir and its active metabolite Ro 64–0802. Clin Pharmacokinet. 1999;37:47184. DOIPubMedGoogle Scholar

Main Article

Page created: December 22, 2011
Page updated: December 22, 2011
Page reviewed: December 22, 2011
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external