Volume 18, Number 6—June 2012
CME ACTIVITY - Synopsis
Iatrogenic Creutzfeldt-Jakob Disease, Final Assessment
Table 3
Category | MM | VV | Homozygotes | Heterozygotes |
---|---|---|---|---|
Population | ||||
Healthy Caucasian, %† | 40 | 10 | 50 | 50 |
European, with sporadic CJD, % | 67 | 17 | 84 | 16 |
Healthy Japanese, % | 92 | 0 | 92 | 8 |
Japanese, with sporadic CJD, (%) | 97 | 1 | 98 | 2 |
Infection source | ||||
Growth hormone | ||||
France (111) | ||||
Genotype frequency, % | 54 | 15 | 69 | 31 |
Incubation period, y | 12 | 9 | 11 | 17 |
United Kingdom (28) | ||||
Genotype frequency, % | 4 | 50 | 54 | 46 |
Incubation period, y | 21 | 18 | 20 | 23 |
United States (11) | ||||
Genotype frequency, % | 55 | 18 | 73 | 27 |
Incubation period, y | 21 | 18 | 20 | 23 |
Combined total (150) | ||||
Genotype frequency, % | 45 | 22 | 67 | 33 |
Incubation period, y | 13 | 12 | 13 | 17 |
Dura mater | ||||
Japan (54)‡ | ||||
Genotype frequency, % | 96 | 0 | 96 | 4 |
Incubation period, y | 16 | NA | 16 | 13 |
Countries other than Japan (54)§ | ||||
Genotype frequency, % | 65 | 15 | 80 | 20 |
Incubation period, y | 12 | 12 | 12 | 16 |
Combined total (108) | ||||
Genotype frequency, % | 81 | 7 | 88 | 12 |
Incubation period, y | 14 | 12 | 14 | 16 |
*CJD, Creutzfeldt-Jakob disease; M, methionine; V, valine; NA, not applicable. All values are rounded to the nearest whole number.
†Based on several large-scale population studies (5–9).
‡Personal communication from M. Yamama, Department of Neurology, Kanazawa University Hospital, Kanazawa, Japan.
§Cases from France (11), Spain (11), Germany (10), Italy (8), the Netherlands (5), and 1 or 2 cases from each of 6 other countries with Caucasian populations.
References
- Duffy P, Wolf J, Collins G, DeVoe AB, Streeten B, Cowen D. Letter: possible person-to-person transmission of Creutzfeldt-Jakob disease. N Engl J Med. 1974;290:692–3. DOIPubMedGoogle Scholar
- Brown P, Brandel J-P, Preece M, Sato T. Iatrogenic Creutzfeldt-Jakob disease: the waning of an era. Neurology. 2006;67:389–93. DOIPubMedGoogle Scholar
- Brown P. Human growth hormone therapy and Creutzfeldt-Jakob disease: a drama in three acts. Pediatrics. 1988;81:85–92.PubMedGoogle Scholar
- Abrams JY, Schonberger LB, Belay ED, Maddox RA, Leschek EW, Mills JL, Lower risk of Creutzfeldt-Jakob disease in pituitary growth hormone recipients initiating treatment after 1977. J Clin Endocrinol Metab. 2011;96:E1666–9. DOIPubMedGoogle Scholar
- Wakisaka Y, Santa N, Doh-ura K, Kitamoto T, Ibayashi S, Iida M, Increased asymmetric pulvinar magnetic resonance imaging signals in Creutzfeldt-Jakob disease with florid plaques following a cadaveric dura mater graft. Neuropathology. 2006;26:82–8. DOIPubMedGoogle Scholar
- Soldevila M, Calafell F, Andrès AM, Yagüe J, Helgason A, Stefánsson K, Prion susceptibility and protective alleles exhibit marked geographic differences. Hum Mutat. 2003;22:104–5. DOIPubMedGoogle Scholar
- Nurmi MH, Bishop M, Strain L, Brett F, McGuigan C, Hutchison M, The normal population distribution of PRNP codon 129 polymorphism. Acta Neurol Scand. 2003;108:374–8. DOIPubMedGoogle Scholar
- Mercier G, Diéterlen F, Lucotte G. Population distribution of the methionine allele at the PRNP codon 129 polymorphism in Europe and the Middle East. Hum Biol. 2008;80:181–90. DOIPubMedGoogle Scholar
- Doh-ura K, Kitamoto T, Sakaki Y, Taateishi J. CJD discrepancy. Nature. 1991;353:801–2. DOIPubMedGoogle Scholar
- Brandel J-P, Preece M, Brown P, Croes E, Laplanche J-L, Agid Y, Distribution of codon 129 genotype in human growth hormone–treated CJD patients in France and the UK. Lancet. 2003;362:128–30. DOIPubMedGoogle Scholar
- Furtner M, Gelpi E, Kiechl S, Knoflach M, Zangerl A, Gotwald T, Iatrogenic Creutzfeldt-Jakob disease 22 years after human growth hormone therapy: clinical and radiological features. J Neurol Neurosurg Psychiatry. 2008;79:229–31. DOIPubMedGoogle Scholar
- Noguchi-Shinohara M, Hamaguchi T, Kitamoto T, Sato T, Nakamura Y, Mizusawa H, Clinical features and diagnosis of dura mater graft–associated Creutzfeldt-Jakob disease. Neurology. 2007;69:360–7. DOIPubMedGoogle Scholar
- Yamada M, Noguchi-Shinohara M, Hamaguchi T, Nozaki I, Kitamoto T, Sato T, Dura mater graft–associated Creutzfeldt-Jakob disease in Japan: clinicopathological and molecular characterization of the two distinct subtypes. Neuropathology. 2009;29:609–18. DOIPubMedGoogle Scholar
- Nozaki I, Hamaguchi T, Sanjo N, Noguchi-Shinohara M, Sakai K, Nakamura Y, Prospective 10-year surveillance of human prion diseases in Japan. Brain. 2010;133:3043–57. DOIPubMedGoogle Scholar
- Ladogana A, Puopolo M, Croes EA, Budka H, Jarius C, Collins S, Mortality from Creutzfeldt-Jakob disease and related disorders in Europe, Australia, and Canada. Neurology. 2005;64:1586–91. DOIPubMedGoogle Scholar
- Garruto RM, Reiber C, Alfonso MP, Gastrich H, Needham K, Sunderman S, Risk behaviors in a rural community with a known point-source exposure to chronic wasting disease. Environ Health. 2008;7:31. DOIPubMedGoogle Scholar
- Diringer H, Braig HR. Infectivity of unconventional viruses in dura mater. Lancet. 1989;1:439–40. DOIPubMedGoogle Scholar
- Pocchiari M, Peano S, Conz A, Eshkol A, Maillard F, Brown P, Combination ultrafiltration and 6 M urea treatment of human growth hormone effectively minimizes risk from potential Creutzfeldt-Jakob disease virus contamination. Horm Res. 1991;35:161–6. DOIPubMedGoogle Scholar
- Yunoki M, Tanaka H, Urayama T, Hattori S, Ohtani M, Ohkubo Y, Prion removal by nanofiltraion under different experimental conditions. Biologicals. 2008;36:27–36. DOIPubMedGoogle Scholar
- Cardone F, Simoneau S, Arzel A, Puopolo M, Berardi VA, Abdel-Haq H, Comparison of nanofiltration efficacy in reducing infectivity of centrifuged versus ultracentrifuged 263K scrapie-infected brain homogenates in “spiked” albumin solutions. Transfusion. 2011. Epub ahead of print. DOIPubMedGoogle Scholar
- Gregori L, Gurgel PV, Lathrop JT, Edwardson P, Lambert BC, Carbonell RG, Reduction in infectivity of endogenous transmissible spongiform encephalopathies present in blood by adsorption to selective affinity resins. Lancet. 2006;368:2226–30. DOIPubMedGoogle Scholar
- Heger A, Bailey A, Neisser-Svae A, Ertl M, Römisch J, Svae TE. Removal of prion infectivity by affinity ligand chromatography during OctaplasLG manufacturing—results from animal bioassay studies. Vox Sang. 2011. Epub ahead of print. DOIPubMedGoogle Scholar
- Piccardo P, Cervenakova L, Vasilyeva I, Yakovleva O, Bacik I, Cervenak J, Candidate cell substrates, vaccine production, and transmissible spongiform encephalopathies. Emerg Infect Dis. 2011;17:2262–9. DOIPubMedGoogle Scholar
- Fichet G, Comoy E, Duval C, Antioga K, Dehen C, Charbonnier A, Novel methods for disinfection of prion-contaminated medical devices. Lancet. 2004;364:521–6. DOIPubMedGoogle Scholar
- Fichet G, Antioga K, Comoy E, Deslys JP, McDonnell G. Prion inactivation using a new gaseous hydrogen peroxide sterilization process. J Hosp Infect. 2007;67:278–86. DOIPubMedGoogle Scholar
- Fichet G, Harrison J, McDonnell G. Reduction of risk of prion transmission on surgical devices with effective cleaning processes. Zentr Steril. 2007;15:418–37.
- Orrú CD, Wilham JM, Raymond LD, Kuhn F, Schroeder B, Raeber AJ, Prion disease blood test using immunoprecipitation and improved quaking-induced conversion. MBiol. 2011;3:e00078-11 [cited 2012 Mar 31]. http://mbio.asm.org/content/2/3/e00078-11.full
- Orrú CD, Wilham JM, Vascellari S, Hughson AG, Caughey B. New generation QuIC assays for prion seeding activity. Prion. 2012;6. Epub ahead of print.
Page created: May 17, 2012
Page updated: May 17, 2012
Page reviewed: May 17, 2012
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.