Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 18, Number 6—June 2012
CME ACTIVITY - Synopsis

Iatrogenic Creutzfeldt-Jakob Disease, Final Assessment

Paul BrownComments to Author , Jean-Philippe Brandel, Takeshi Sato, Yosikazu Nakamura, Jan MacKenzie, Robert G. Will, Anna Ladogana, Maurizio Pocchiari, Ellen W. Leschek, and Lawrence B. Schonberger
Author affiliations: Centre à l’Energie Atomique, Fontenay-aux-Roses, France (P. Brown); Institut National de la Santé et de la Recherche Médicale, Paris, France (J.-P. Brandel); Nanohana Clinic, Tokyo, Japan (T. Sato); Jichi Medical University, Yakushiji, Japan (Y. Nakamura); Western General Hospital, Edinburgh, Scotland, UK (J. MacKenzie, R.G. Will); Istituto Superiore de Sanità, Rome, Italy (A. Ladogana, M. Pocchiari); National Institutes of Health, Bethesda, Maryland, USA (E.W. Leschek); Centers for Disease Control and Prevention, Atlanta, Georgia, USA (L.B. Schonberger)

Main Article

Table 3

Comparison of PRNP codon 129 genotype frequencies and incubation periods in growth hormone– and dura mater–associated cases of iatrogenic CJD*

Category MM VV Homozygotes Heterozygotes
Population
Healthy Caucasian, %† 40 10 50 50
European, with sporadic CJD, % 67 17 84 16
Healthy Japanese, % 92 0 92 8
Japanese, with sporadic CJD, (%) 97 1 98 2
Infection source
Growth hormone
France (111)
Genotype frequency, % 54 15 69 31
Incubation period, y 12 9 11 17
United Kingdom (28)
Genotype frequency, % 4 50 54 46
Incubation period, y 21 18 20 23
United States (11)
Genotype frequency, % 55 18 73 27
Incubation period, y 21 18 20 23
Combined total (150)
Genotype frequency, % 45 22 67 33
Incubation period, y 13 12 13 17
Dura mater
Japan (54)‡
Genotype frequency, % 96 0 96 4
Incubation period, y 16 NA 16 13
Countries other than Japan (54)§
Genotype frequency, % 65 15 80 20
Incubation period, y 12 12 12 16
Combined total (108)
Genotype frequency, % 81 7 88 12
Incubation period, y 14 12 14 16

*CJD, Creutzfeldt-Jakob disease; M, methionine; V, valine; NA, not applicable. All values are rounded to the nearest whole number.
†Based on several large-scale population studies (59).
‡Personal communication from M. Yamama, Department of Neurology, Kanazawa University Hospital, Kanazawa, Japan.
§Cases from France (11), Spain (11), Germany (10), Italy (8), the Netherlands (5), and 1 or 2 cases from each of 6 other countries with Caucasian populations.

Main Article

References
  1. Duffy  P, Wolf  J, Collins  G, DeVoe  AB, Streeten  B, Cowen  D. Letter: possible person-to-person transmission of Creutzfeldt-Jakob disease. N Engl J Med. 1974;290:6923. DOIPubMedGoogle Scholar
  2. Brown  P, Brandel  J-P, Preece  M, Sato  T. Iatrogenic Creutzfeldt-Jakob disease: the waning of an era. Neurology. 2006;67:38993. DOIPubMedGoogle Scholar
  3. Brown  P. Human growth hormone therapy and Creutzfeldt-Jakob disease: a drama in three acts. Pediatrics. 1988;81:8592.PubMedGoogle Scholar
  4. Abrams  JY, Schonberger  LB, Belay  ED, Maddox  RA, Leschek  EW, Mills  JL, Lower risk of Creutzfeldt-Jakob disease in pituitary growth hormone recipients initiating treatment after 1977. J Clin Endocrinol Metab. 2011;96:E1666–9. DOIPubMedGoogle Scholar
  5. Wakisaka  Y, Santa  N, Doh-ura  K, Kitamoto  T, Ibayashi  S, Iida  M, Increased asymmetric pulvinar magnetic resonance imaging signals in Creutzfeldt-Jakob disease with florid plaques following a cadaveric dura mater graft. Neuropathology. 2006;26:828. DOIPubMedGoogle Scholar
  6. Soldevila  M, Calafell  F, Andrès  AM, Yagüe  J, Helgason  A, Stefánsson  K, Prion susceptibility and protective alleles exhibit marked geographic differences. Hum Mutat. 2003;22:1045. DOIPubMedGoogle Scholar
  7. Nurmi  MH, Bishop  M, Strain  L, Brett  F, McGuigan  C, Hutchison  M, The normal population distribution of PRNP codon 129 polymorphism. Acta Neurol Scand. 2003;108:3748. DOIPubMedGoogle Scholar
  8. Mercier  G, Diéterlen  F, Lucotte  G. Population distribution of the methionine allele at the PRNP codon 129 polymorphism in Europe and the Middle East. Hum Biol. 2008;80:18190. DOIPubMedGoogle Scholar
  9. Doh-ura  K, Kitamoto  T, Sakaki  Y, Taateishi  J. CJD discrepancy. Nature. 1991;353:8012. DOIPubMedGoogle Scholar
  10. Brandel  J-P, Preece  M, Brown  P, Croes  E, Laplanche  J-L, Agid  Y, Distribution of codon 129 genotype in human growth hormone–treated CJD patients in France and the UK. Lancet. 2003;362:12830. DOIPubMedGoogle Scholar
  11. Furtner  M, Gelpi  E, Kiechl  S, Knoflach  M, Zangerl  A, Gotwald  T, Iatrogenic Creutzfeldt-Jakob disease 22 years after human growth hormone therapy: clinical and radiological features. J Neurol Neurosurg Psychiatry. 2008;79:22931. DOIPubMedGoogle Scholar
  12. Noguchi-Shinohara  M, Hamaguchi  T, Kitamoto  T, Sato  T, Nakamura  Y, Mizusawa  H, Clinical features and diagnosis of dura mater graft–associated Creutzfeldt-Jakob disease. Neurology. 2007;69:3607. DOIPubMedGoogle Scholar
  13. Yamada  M, Noguchi-Shinohara  M, Hamaguchi  T, Nozaki  I, Kitamoto  T, Sato  T, Dura mater graft–associated Creutzfeldt-Jakob disease in Japan: clinicopathological and molecular characterization of the two distinct subtypes. Neuropathology. 2009;29:60918. DOIPubMedGoogle Scholar
  14. Nozaki  I, Hamaguchi  T, Sanjo  N, Noguchi-Shinohara  M, Sakai  K, Nakamura  Y, Prospective 10-year surveillance of human prion diseases in Japan. Brain. 2010;133:304357. DOIPubMedGoogle Scholar
  15. Ladogana  A, Puopolo  M, Croes  EA, Budka  H, Jarius  C, Collins  S, Mortality from Creutzfeldt-Jakob disease and related disorders in Europe, Australia, and Canada. Neurology. 2005;64:158691. DOIPubMedGoogle Scholar
  16. Garruto  RM, Reiber  C, Alfonso  MP, Gastrich  H, Needham  K, Sunderman  S, Risk behaviors in a rural community with a known point-source exposure to chronic wasting disease. Environ Health. 2008;7:31. DOIPubMedGoogle Scholar
  17. Diringer  H, Braig  HR. Infectivity of unconventional viruses in dura mater. Lancet. 1989;1:43940. DOIPubMedGoogle Scholar
  18. Pocchiari  M, Peano  S, Conz  A, Eshkol  A, Maillard  F, Brown  P, Combination ultrafiltration and 6 M urea treatment of human growth hormone effectively minimizes risk from potential Creutzfeldt-Jakob disease virus contamination. Horm Res. 1991;35:1616. DOIPubMedGoogle Scholar
  19. Yunoki  M, Tanaka  H, Urayama  T, Hattori  S, Ohtani  M, Ohkubo  Y, Prion removal by nanofiltraion under different experimental conditions. Biologicals. 2008;36:2736. DOIPubMedGoogle Scholar
  20. Cardone  F, Simoneau  S, Arzel  A, Puopolo  M, Berardi  VA, Abdel-Haq  H, Comparison of nanofiltration efficacy in reducing infectivity of centrifuged versus ultracentrifuged 263K scrapie-infected brain homogenates in “spiked” albumin solutions. Transfusion. 2011. Epub ahead of print. DOIPubMedGoogle Scholar
  21. Gregori  L, Gurgel  PV, Lathrop  JT, Edwardson  P, Lambert  BC, Carbonell  RG, Reduction in infectivity of endogenous transmissible spongiform encephalopathies present in blood by adsorption to selective affinity resins. Lancet. 2006;368:222630. DOIPubMedGoogle Scholar
  22. Heger  A, Bailey  A, Neisser-Svae  A, Ertl  M, Römisch  J, Svae  TE. Removal of prion infectivity by affinity ligand chromatography during OctaplasLG manufacturing—results from animal bioassay studies. Vox Sang. 2011. Epub ahead of print. DOIPubMedGoogle Scholar
  23. Piccardo  P, Cervenakova  L, Vasilyeva  I, Yakovleva  O, Bacik  I, Cervenak  J, Candidate cell substrates, vaccine production, and transmissible spongiform encephalopathies. Emerg Infect Dis. 2011;17:22629. DOIPubMedGoogle Scholar
  24. Fichet  G, Comoy  E, Duval  C, Antioga  K, Dehen  C, Charbonnier  A, Novel methods for disinfection of prion-contaminated medical devices. Lancet. 2004;364:5216. DOIPubMedGoogle Scholar
  25. Fichet  G, Antioga  K, Comoy  E, Deslys  JP, McDonnell  G. Prion inactivation using a new gaseous hydrogen peroxide sterilization process. J Hosp Infect. 2007;67:27886. DOIPubMedGoogle Scholar
  26. Fichet  G, Harrison  J, McDonnell  G. Reduction of risk of prion transmission on surgical devices with effective cleaning processes. Zentr Steril. 2007;15:41837.
  27. Orrú  CD, Wilham  JM, Raymond  LD, Kuhn  F, Schroeder  B, Raeber  AJ, Prion disease blood test using immunoprecipitation and improved quaking-induced conversion. MBiol. 2011;3:e00078-11 [cited 2012 Mar 31]. http://mbio.asm.org/content/2/3/e00078-11.full
  28. Orrú  CD, Wilham  JM, Vascellari  S, Hughson  AG, Caughey  B. New generation QuIC assays for prion seeding activity. Prion. 2012;6. Epub ahead of print.

Main Article

Page created: May 17, 2012
Page updated: May 17, 2012
Page reviewed: May 17, 2012
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external