Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 18, Number 7—July 2012
Dispatch

Role of Birds in Dispersal of Etiologic Agents of Tick-borne Zoonoses, Spain, 2009

Ana M. Palomar, Paula Santibáñez, David Mazuelas, Lidia Roncero, Sonia Santibáñez, Aránzazu Portillo, and José A. OteoComments to Author 
Author affiliations: Hospital San Pedro–Centro de Investigación Biomédica de La Rioja, Logroño, Spain (A.M. Palomar, P. Santibáñez, S. Santibáñez, A. Portillo, J.A. Oteo); and Environment Resources Inc., Logroño (D. Mazuelas, L. Roncero)

Main Article

Table 1

PCR primer pairs used in study of the role of birds in dispersal of etiologic agents of tick-borne zoonoses, Spain, 2009*

Bacteria Gene target Primer name Primer sequence, 5′ → 3′ Amplified
fragment, bp Annealing temp., °C Ref.
Anaplasma spp. 16S rRNA,
nested ge3a CACATGCAAGTCGAACGGATTATTC 932 55 (9)
ge10r TTCCGTTAAGAAGGAT CTAATCTCC
ge9f AACGGATTATTCTTTATAGCTTGCT 546 55 (9)
ge2 GGCAGTATTAAAAGCAGCTCCAGG
msp msp3F CCAGCGTTTAGCAAGATAAGAG 334 56 (10)
msp3R GCCCAGTAACAACATCATAAGC
Borrelia spp. flaB,
nested† Outer 1 AARGAATTGGCAGTTCAATC 497 52 (11)
Outer 2 GCATTTTCWATTTTAGCAAGTGATG
Inner 1 ACATATTCAGATGCAGACAGAGGTTCTA 389 55 (11)
Inner 2 GAAGGTGCTGTAGCAGGTGCTGGCTGT
5S-23S intergenic spacer, nested 23SC1 TAAGCTGACTAATACTAATTACCC 380 52 (12)
23SN1 ACCATAGACTCTTATTACTTTGAC
5SCB GAGAGTAGGTTATTGCCAGGG 226 55 (12)
23SN2 ACCATAGACTCTTATTACTTTGACCA
Rickettsia spp. ompA,
seminested Rr190.70p ATGGCGAATATTTCTCCAAAA 631 46 (13,14)
Rr190.701n GTTCCGTTAATGGCAGCATCT
Rr190.70p ATGGCGAATATTTCTCCAAAA 532 48 (14)
Rr190.602n AGTGCAGCATTCGCTCCCCCT
ompB, nested rompB OF GTAACCGGAAGTAATCGTTTCGTAA 511 54 (15)
rompB OR GCTTTATAACCAGCTAAACCACC
rompB SFG IF GTTTAATACGTGCTGCTAACCAA 420 56 (15)
rompB SFG/TG IR GGTTTGGCCCATATACCATAAG
gltA central region,
nested RpCS.877p GGGGGCCTGCTCACGGCGG 381 48 (14)
RpCS1258n ATTGCAAAAAGTACAGTGAACA
RpCS.896p GGCTAATGAAGCAGTGATAA 337 54 (15)
RpCS.1233n GCGACGGTATACCCATAGC

*Temp., temperature; ref., reference; msp, p44 major surface protein gene; flaB, flagellin gene; ompB, 120-kDa genus common antigen gene; ompA, 190-kDa protein antigen gene; gltA, citrate synthase gene.
†R = A/G; W = A/T.

Main Article

References
  1. Blanco  JR, Oteo  JA. Human granulocytic ehrlichiosis in Europe. Clin Microbiol Infect. 2002;8:76372. DOIPubMedGoogle Scholar
  2. Oteo  JA, Backenson  PB, del Mar Vitutia  M, García Moncó  JC, Rodríguez  I, Escudero  R, Use of the C3H/He Lyme disease mouse model for the recovery of a Spanish isolate of Borrelia garinii from erythema migrans lesions. Res Microbiol. 1998;149:3946. DOIPubMedGoogle Scholar
  3. Oteo  JA, Portillo  A. Tick-borne rickettsioses in Europe. Ticks Tick Borne Dis. 2012. In press.
  4. Hubálek  Z. An annotated checklist of pathogenic microorganisms associated with migratory birds. J Wildl Dis. 2004;40:63959.PubMedGoogle Scholar
  5. Hulinska  D, Votypka  J, Plch  J, Vlcek  E, Valesová  M, Bojar  M, Molecular and microscopical evidence of Ehrlichia spp. and Borrelia burgdorferi sensu lato in patients, animals and ticks in the Czech Republic. New Microbiol. 2002;25:43748.PubMedGoogle Scholar
  6. Humair  PF. Birds and Borrelia. Int J Med Microbiol. 2002;291:704. DOIPubMedGoogle Scholar
  7. Manilla  G. Fauna D’Italia Ixodida. Bologna (Italy): Calderini; 1998.
  8. Black  WC, Piesman  J. Phylogeny of hard and soft tick taxa (Acari:Ixodida) based on mitochondrial 16S rDNA sequences. Proc Natl Acad Sci U S A. 1994;91:100348. DOIPubMedGoogle Scholar
  9. Massung  RF, Slater  K, Owens  JH, Nicholson  WL, Mather  TN, Solberg  VB, Nested PCR assay for detection of granulocytic ehrlichiae. J Clin Microbiol. 1998;36:10905.PubMedGoogle Scholar
  10. Zeidner  NS, Burkot  TR, Massung  R. Transmission of the agent of human granulocytic ehrlichiosis by Ixodes spinipalpis ticks: evidence of an enzootic cycle of dual infection with Borrelia burgdorferi in northern Colorado. J Infect Dis. 2000;182:6169. DOIPubMedGoogle Scholar
  11. Clark  K, Hendricks  A, Burge  D. Molecular identification and analysis of Borrelia burgdorferi sensu lato in lizards in the southeastern United States. Appl Environ Microbiol. 2005;71:261625. DOIPubMedGoogle Scholar
  12. Rijpkema  SG, Molkenboer  MJ, Schouls  LM, Jongejan  F, Schellekens  JF. Simultaneous detection and genotyping of three genomic groups of Borrelia burgdorferi sensu lato in Dutch Ixodes ricinus ticks by characterization of the amplified intergenic spacer region between 5S and 23S rRNA genes. J Clin Microbiol. 1995;33:30915.PubMedGoogle Scholar
  13. Roux  V, Fournier  PE, Raoult  D. Differentiation of spotted fever group rickettsiae by sequencing and analysis of restriction fragment length polymorphism of PCR-amplified DNA of the gene encoding the protein rOmpA. J Clin Microbiol. 1996;34:205865.PubMedGoogle Scholar
  14. Regnery  RL, Spruill  CL, Plikaytis  BD. Genotypic identification of rickettsiae and estimation of intraspecies sequence divergence for portions of two rickettsial genes. J Bacteriol. 1991;173:157689.PubMedGoogle Scholar
  15. Choi  YJ, Jang  WJ, Kim  JY, Lee  SH, Park  KH, Paik  HS, Spotted fever group and typhus group rickettsioses in humans, South Korea. Emerg Infect Dis. 2005;11:23744. DOIPubMedGoogle Scholar

Main Article

Page created: June 14, 2012
Page updated: June 14, 2012
Page reviewed: June 14, 2012
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external