Volume 18, Number 7—July 2012
Dispatch
Role of Birds in Dispersal of Etiologic Agents of Tick-borne Zoonoses, Spain, 2009
Table 1
Bacteria | Gene target | Primer name | Primer sequence, 5′ → 3′ | Amplified fragment, bp | Annealing temp., °C | Ref. |
---|---|---|---|---|---|---|
Anaplasma spp. | 16S rRNA, nested | ge3a | CACATGCAAGTCGAACGGATTATTC | 932 | 55 | (9) |
ge10r | TTCCGTTAAGAAGGAT CTAATCTCC | |||||
ge9f | AACGGATTATTCTTTATAGCTTGCT | 546 | 55 | (9) | ||
ge2 | GGCAGTATTAAAAGCAGCTCCAGG | |||||
msp | msp3F | CCAGCGTTTAGCAAGATAAGAG | 334 | 56 | (10) | |
msp3R | GCCCAGTAACAACATCATAAGC | |||||
Borrelia spp. | flaB, nested† | Outer 1 | AARGAATTGGCAGTTCAATC | 497 | 52 | (11) |
Outer 2 | GCATTTTCWATTTTAGCAAGTGATG | |||||
Inner 1 | ACATATTCAGATGCAGACAGAGGTTCTA | 389 | 55 | (11) | ||
Inner 2 | GAAGGTGCTGTAGCAGGTGCTGGCTGT | |||||
5S-23S intergenic spacer, nested | 23SC1 | TAAGCTGACTAATACTAATTACCC | 380 | 52 | (12) | |
23SN1 | ACCATAGACTCTTATTACTTTGAC | |||||
5SCB | GAGAGTAGGTTATTGCCAGGG | 226 | 55 | (12) | ||
23SN2 | ACCATAGACTCTTATTACTTTGACCA | |||||
Rickettsia spp. | ompA, seminested | Rr190.70p | ATGGCGAATATTTCTCCAAAA | 631 | 46 | (13,14) |
Rr190.701n | GTTCCGTTAATGGCAGCATCT | |||||
Rr190.70p | ATGGCGAATATTTCTCCAAAA | 532 | 48 | (14) | ||
Rr190.602n | AGTGCAGCATTCGCTCCCCCT | |||||
ompB, nested | rompB OF | GTAACCGGAAGTAATCGTTTCGTAA | 511 | 54 | (15) | |
rompB OR | GCTTTATAACCAGCTAAACCACC | |||||
rompB SFG IF | GTTTAATACGTGCTGCTAACCAA | 420 | 56 | (15) | ||
rompB SFG/TG IR | GGTTTGGCCCATATACCATAAG | |||||
gltA central region, nested | RpCS.877p | GGGGGCCTGCTCACGGCGG | 381 | 48 | (14) | |
RpCS1258n | ATTGCAAAAAGTACAGTGAACA | |||||
RpCS.896p | GGCTAATGAAGCAGTGATAA | 337 | 54 | (15) | ||
RpCS.1233n | GCGACGGTATACCCATAGC |
*Temp., temperature; ref., reference; msp, p44 major surface protein gene; flaB, flagellin gene; ompB, 120-kDa genus common antigen gene; ompA, 190-kDa protein antigen gene; gltA, citrate synthase gene.
†R = A/G; W = A/T.
References
- Blanco JR, Oteo JA. Human granulocytic ehrlichiosis in Europe. Clin Microbiol Infect. 2002;8:763–72. DOIPubMedGoogle Scholar
- Oteo JA, Backenson PB, del Mar Vitutia M, García Moncó JC, Rodríguez I, Escudero R, Use of the C3H/He Lyme disease mouse model for the recovery of a Spanish isolate of Borrelia garinii from erythema migrans lesions. Res Microbiol. 1998;149:39–46. DOIPubMedGoogle Scholar
- Oteo JA, Portillo A. Tick-borne rickettsioses in Europe. Ticks Tick Borne Dis. 2012. In press.
- Hubálek Z. An annotated checklist of pathogenic microorganisms associated with migratory birds. J Wildl Dis. 2004;40:639–59.PubMedGoogle Scholar
- Hulinska D, Votypka J, Plch J, Vlcek E, Valesová M, Bojar M, Molecular and microscopical evidence of Ehrlichia spp. and Borrelia burgdorferi sensu lato in patients, animals and ticks in the Czech Republic. New Microbiol. 2002;25:437–48.PubMedGoogle Scholar
- Manilla G. Fauna D’Italia Ixodida. Bologna (Italy): Calderini; 1998.
- Black WC, Piesman J. Phylogeny of hard and soft tick taxa (Acari:Ixodida) based on mitochondrial 16S rDNA sequences. Proc Natl Acad Sci U S A. 1994;91:10034–8. DOIPubMedGoogle Scholar
- Massung RF, Slater K, Owens JH, Nicholson WL, Mather TN, Solberg VB, Nested PCR assay for detection of granulocytic ehrlichiae. J Clin Microbiol. 1998;36:1090–5.PubMedGoogle Scholar
- Zeidner NS, Burkot TR, Massung R. Transmission of the agent of human granulocytic ehrlichiosis by Ixodes spinipalpis ticks: evidence of an enzootic cycle of dual infection with Borrelia burgdorferi in northern Colorado. J Infect Dis. 2000;182:616–9. DOIPubMedGoogle Scholar
- Clark K, Hendricks A, Burge D. Molecular identification and analysis of Borrelia burgdorferi sensu lato in lizards in the southeastern United States. Appl Environ Microbiol. 2005;71:2616–25. DOIPubMedGoogle Scholar
- Rijpkema SG, Molkenboer MJ, Schouls LM, Jongejan F, Schellekens JF. Simultaneous detection and genotyping of three genomic groups of Borrelia burgdorferi sensu lato in Dutch Ixodes ricinus ticks by characterization of the amplified intergenic spacer region between 5S and 23S rRNA genes. J Clin Microbiol. 1995;33:3091–5.PubMedGoogle Scholar
- Roux V, Fournier PE, Raoult D. Differentiation of spotted fever group rickettsiae by sequencing and analysis of restriction fragment length polymorphism of PCR-amplified DNA of the gene encoding the protein rOmpA. J Clin Microbiol. 1996;34:2058–65.PubMedGoogle Scholar
- Regnery RL, Spruill CL, Plikaytis BD. Genotypic identification of rickettsiae and estimation of intraspecies sequence divergence for portions of two rickettsial genes. J Bacteriol. 1991;173:1576–89.PubMedGoogle Scholar
- Choi YJ, Jang WJ, Kim JY, Lee SH, Park KH, Paik HS, Spotted fever group and typhus group rickettsioses in humans, South Korea. Emerg Infect Dis. 2005;11:237–44. DOIPubMedGoogle Scholar
Page created: June 14, 2012
Page updated: June 14, 2012
Page reviewed: June 14, 2012
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.