Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 18, Number 9—September 2012
Research

Surveillance for Influenza Viruses in Poultry and Swine, West Africa, 2006–2008

Emmanuel Couacy-Hymann, Viviane A. Kouakou, Gilbert L. Aplogan, Felix Awoume, Casimir K. Kouakou, Lamidi Kakpo, Bridgett R. Sharp, Laura McClenaghan, Pamela McKenzie, Robert G. Webster, Richard J. Webby, and Mariette F. Ducatez1Comments to Author 
Author affiliations: Central Laboratory for Animal Diseases, Bingerville, Côte d’Ivoire (E. Couacy-Hymann, V.A. Kouakou, C.K. Kouakou); Laboratoire de Diagnostic Vétérinaire et de Sérosurveillance, Parakou, Benin (G.L. Aplogan, L. Kakpo); Laboratoire Vétérinaire de Lomé, Lomé, Togo (F. Awoume); and St Jude Children’s Research Hospital, Memphis, Tennessee, USA (B.R. Sharp, L. McClenaghan, P. McKenzie, R.G. Webster, R.J. Webby, M.F. Ducatez)

Main Article

Table 4

Role of influenza virus stability, as influenced by temperature and relative humidity, on hen egg and livestock production, Benin, Côte d’Ivoire, Egypt, Nigeria, Togo, Indonesia, and Vietnam*

Country Livestock production
Temperature, °C (range)¶# Relative humidity, % (range)#**
Hen eggs†‡ Chicken meat‡§ Turkey meat‡§ Duck meat‡§ Pork‡§
Benin 306 22 ND ND 4 26.3 (23–30) 74.9 (70–81)
Côte d’Ivoire 610 23 ND ND 7 26.7 (22–32) 75.3 (70–82)
Egypt 7,000 629 10.5 39 2 22 (9–35) 35.2 (35–46)
Nigeria 12,284 243 ND ND 218 26.4 (21–33) 84.7 (80–88)
Togo 174 9 ND ND 9 26.6 (22–32) 70.6 (63–78)
Indonesia 1,123 1,450 ND 31 637 27.7 (23–33) 80.6 (75–85)
Vietnam 247 448 ND 82 2,470 24.1 (13–33) 71.1 (67–76)

*Livestock production: Food and Agriculture Organization data for 2008 (21), temperature and relative humidity data: www.climatetemp.info/, March 28, 2012. ND, no data.
†Combination of official data, Food and Agriculture Organization estimates, and calculated data.
‡× 106 eggs.
§× 106 kg.
¶Annual mean value (coldest monthly average low temperature to warmest monthly average high temperature).
#Temperature and relative humidity were measured in the following cities: Cotonou, Benin; Abidjan, Côte d’Ivoire; Cairo, Egypt; Lagos, Nigeria; Lomé, Togo; Jakarta, Indonesia; and Hanoi, Vietnam.
**Annual mean value (driest monthly relative humidity average to most humid monthly relative humidity average).

Main Article

References
  1. Gaidet  N, Dodman  T, Caron  A, Balanca  G, Desvaux  S, Goutard  F, Avian influenza viruses in water birds, Africa. Emerg Infect Dis. 2007;13:6269 .DOIPubMedGoogle Scholar
  2. Abolnik  C. Detection of a North American lineage H5 avian influenza virus in a South African wild duck. Onderstepoort J Vet Res. 2007;74:17780.PubMedGoogle Scholar
  3. Abolnik  C, Gerdes  GH, Sinclair  M, Ganzevoort  BW, Kitching  JP, Burger  CE, Phylogenetic analysis of influenza A viruses (H6N8, H1N8, H4N2, H9N2, H10N7) isolated from wild birds, ducks, and ostriches in South Africa from 2007 to 2009. Avian Dis. 2010;54(Suppl):31322 .DOIPubMedGoogle Scholar
  4. Aly  MM, Arafa  A, Kilany  WH, Sleim  AA, Hassan  MK. Isolation of a low pathogenic avian influenza virus (H7N7) from a black kite (Milvus migrans) in Egypt in 2005. Avian Dis. 2010;54(Suppl):45760 .DOIPubMedGoogle Scholar
  5. Gaidet  N, Cattoli  G, Hammoumi  S, Newman  SH, Hagemeijer  W, Takekawa  JY, Evidence of infection by H5N2 highly pathogenic avian influenza viruses in healthy wild waterfowl. PLoS Pathog. 2008;4:e1000127 .DOIPubMedGoogle Scholar
  6. Simulundu  E, Ishii  A, Igarashi  M, Mweene  AS, Suzuki  Y, Hang'ombe  BM, Characterization of influenza A viruses isolated from wild waterfowls in Zambia. J Gen Virol. 2011;92:141627 .DOIPubMedGoogle Scholar
  7. Snoeck  CJ, Adeyanju  AT, De Landtsheer  S, Ottosson  U, Manu  S, Hagemeijer  W, Reassortant low pathogenic avian influenza H5N2 viruses in African wild birds. J Gen Virol. 2011;92:117283 .DOIPubMedGoogle Scholar
  8. Abolnik  C. Molecular characterization of H5N2 avian influenza viruses isolated from South African ostriches in 2006. Avian Dis. 2007;51:8739 .DOIPubMedGoogle Scholar
  9. Abolnik  C, Bisschop  S, Gerdes  T, Olivier  A, Horner  R. Outbreaks of avian influenza H6N2 viruses in chickens arose by a reassortment of H6N8 and H9N2 ostrich viruses. Virus Genes. 2007;34:3745 .DOIPubMedGoogle Scholar
  10. Abolnik  C, Bisschop  SP, Gerdes  GH, Olivier  AJ, Horner  RF. Phylogenetic analysis of low-pathogenicity avian influenza H6N2 viruses from chicken outbreaks (2001–2005) suggest that they are reassortants of historic ostrich low-pathogenicity avian influenza H9N2 and H6N8 viruses. Avian Dis. 2007;51(Suppl):27984 .DOIPubMedGoogle Scholar
  11. Abolnik  C, Londt  BZ, Manvell  RJ, Shell  W, Banks  J, Gerdes  GH, Characterisation of a highly pathogenic influenza A virus of subtype H5N2 isolated from ostriches in South Africa in 2004. Influenza Other Respir Viruses. 2009;3:638 .DOIPubMedGoogle Scholar
  12. Update on human cases of highly pathogenic avian influenza A (H5N1) infection: 2009. Wkly Epidemiol Rec. 2010;85:4951.PubMedGoogle Scholar
  13. World Organization for Animal Health. Animal health in the world. Update on highly pathogenic avian influenza in animals (type H5 and H7), 2011 [cited 2012 Mar 28]. http://www.oie.int/animal-health-in-the-world/update-on-avian-influenza/
  14. Couacy-Hymann  E, Danho  T, Keita  D, Bodjo  SC, Kouakou  C, Koffi  YM, The first specific detection of a highly pathogenic avian influenza virus (H5N1) in Ivory Coast. Zoonoses Public Health. 2009;56:105 .DOIPubMedGoogle Scholar
  15. World Health Organization. WHO manual on animal diagnosis and surveillance. 2002 [cited 2012 Mar 28]. http://www.who.int/vaccine_research/diseases/influenza/WHO_manual_on_animal-diagnosis_and_surveillance_2002_5.pdf
  16. World Organization for Animal Health. Manual of diagnostic tests and vaccines for terrestrial animals, 2009 [cited 2012 Mar 28]. http://web.oie.int/eng/normes/MMANUAL/A_Index.htm
  17. Lee  CW, Suarez  DL. Application of real-time RT-PCR for the quantitation and competitive replication study of H5 and H7 subtype avian influenza virus. J Virol Methods. 2004;119:1518 .DOIPubMedGoogle Scholar
  18. Spackman  E, Senne  DA, Myers  TJ, Bulaga  LL, Garber  LP, Perdue  ML, Development of a real-time reverse transcriptase PCR assay for type A influenza virus and the avian H5 and H7 hemagglutinin subtypes. J Clin Microbiol. 2002;40:325660 .DOIPubMedGoogle Scholar
  19. Fouchier  RA, Bestebroer  TM, Herfst  S, Van Der Kemp  L, Rimmelzwaan  GF, Osterhaus  AD. Detection of influenza A viruses from different species by PCR amplification of conserved sequences in the matrix gene. J Clin Microbiol. 2000;38:4096101.PubMedGoogle Scholar
  20. Moura  FE. Influenza in the tropics. Curr Opin Infect Dis. 2010;23:41520 .DOIPubMedGoogle Scholar
  21. Food and Agriculture Organization of the United Nations. FAOSTAT [cited 2012 Mar 28]. http://faostat.fao.org/site/569/DesktopDefault.aspx?PageID=569#ancor
  22. World Health Organization/World Organization for Animal Health/Food and Agriculture Organization H5N1 Evolution Working Group. Toward a unified nomenclature system for highly pathogenic avian influenza virus (H5N1). Emerg Infect Dis. 2008;14:e1.
  23. World Health Organization/World Organization for Animal Health/Food and Agriculture Organization H5N1 Evolution Working Group. Continuing progress towards a unified nomenclature for the highly pathogenic H5N1 avian influenza viruses: divergence of clade 2.2 viruses. Influenza Other Respir Viruses. 2009;3:5962 .DOIGoogle Scholar
  24. Munster  VJ, Wallensten  A, Baas  C, Rimmelzwaan  GF, Schutten  M, Olsen  B, Mallards and highly pathogenic avian influenza ancestral viruses, northern Europe. Emerg Infect Dis. 2005;11:154551 .DOIPubMedGoogle Scholar
  25. Normile  D. Avian influenza. Evidence points to migratory birds in H5N1 spread. Science. 2006;311:1225 .DOIPubMedGoogle Scholar
  26. Sturm-Ramirez  KM, Ellis  T, Bousfield  B, Bissett  L, Dyrting  K, Rehg  JE, Reemerging H5N1 influenza viruses in Hong Kong in 2002 are highly pathogenic to ducks. J Virol. 2004;78:4892901 .DOIPubMedGoogle Scholar
  27. Ducatez  MF, Olinger  CM, Owoade  AA, De Landtsheer  S, Ammerlaan  W, Niesters  HG, Avian flu: multiple introductions of H5N1 in Nigeria. Nature. 2006;442:37 .DOIPubMedGoogle Scholar
  28. Ducatez  MF, Olinger  CM, Owoade  AA, Tarnagda  Z, Tahita  MC, Sow  A, Molecular and antigenic evolution and geographical spread of H5N1 highly pathogenic avian influenza viruses in western Africa. J Gen Virol. 2007;88:2297306 .DOIPubMedGoogle Scholar
  29. Gaidet  N, Newman  SH, Hagemeijer  W, Dodman  T, Cappelle  J, Hammoumi  S, Duck migration and past influenza A (H5N1) outbreak areas. Emerg Infect Dis. 2008;14:11646 .DOIPubMedGoogle Scholar
  30. Prosser  DJ, Cui  P, Takekawa  JY, Tang  M, Hou  Y, Collins  BM, Wild bird migration across the Qinghai-Tibetan Plateau: a transmission route for highly pathogenic H5N1. PLoS ONE. 2011;6:e17622 .DOIPubMedGoogle Scholar
  31. Saad  MD, Ahmed  LS, Gamal-Eldein  MA, Fouda  MK, Khalil  F, Yingst  SL, Possible avian influenza (H5N1) from migratory bird, Egypt. Emerg Infect Dis. 2007;13:11201 .DOIPubMedGoogle Scholar
  32. Olsen  B, Munster  VJ, Wallensten  A, Waldenstrom  J, Osterhaus  AD, Fouchier  RA. Global patterns of influenza A virus in wild birds. Science. 2006;312:3848 .DOIPubMedGoogle Scholar
  33. Fusaro  A, Nelson  MI, Joannis  T, Bertolotti  L, Monne  I, Salviato  A, Evolutionary dynamics of multiple sublineages of H5N1 influenza viruses in Nigeria from 2006 to 2008. J Virol. 2010;84:323947 .DOIPubMedGoogle Scholar
  34. Owoade  AA, Gerloff  NA, Ducatez  MF, Taiwo  JO, Kremer  JR, Muller  CP. Replacement of sublineages of avian influenza (H5N1) by reassortments, sub-Saharan Africa. Emerg Infect Dis. 2008;14:17315 .DOIPubMedGoogle Scholar
  35. Kim  JK, Negovetich  NJ, Forrest  HL, Webster  RG. Ducks: the “Trojan horses” of H5N1 influenza. Influenza Other Respir Viruses. 2009;3:1218 .DOIPubMedGoogle Scholar
  36. Kayali  G, El-Shesheny  R, Kutkat  MA, Kandeil  AM, Mostafa  A, Ducatez  MF, The continuing threat of influenza (H5N1) virus circulation in Egypt. Emerg Infect Dis. 2011;17:23068 .DOIPubMedGoogle Scholar
  37. Lowen  A, Palese  P. Transmission of influenza virus in temperate zones is predominantly by aerosol, in the tropics by contact: a hypothesis. PLoS Curr. 2009;1:RRN1002 .DOIPubMedGoogle Scholar
  38. Lowen  AC, Mubareka  S, Steel  J, Palese  P. Influenza virus transmission is dependent on relative humidity and temperature. PLoS Pathog. 2007;3:14706 .DOIPubMedGoogle Scholar
  39. Songer  JR. Influence of relative humidity on the survival of some airborne viruses. Appl Microbiol. 1967;15:3542.PubMedGoogle Scholar
  40. Krauss  S, Stallknecht  DE, Negovetich  NJ, Niles  LJ, Webby  RJ, Webster  RG. Coincident ruddy turnstone migration and horseshoe crab spawning creates an ecological “hot spot” for influenza viruses. Proc Biol Sci. 2010;277:33739 .DOIPubMedGoogle Scholar

Main Article

1Current affiliation: Institut National de la Recherche Agronomique,Toulouse, France.

Page created: August 16, 2012
Page updated: August 16, 2012
Page reviewed: August 16, 2012
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external