Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 20, Number 12—December 2014
Research

Molecular Evolution of Peste des Petits Ruminants Virus

Murali Muniraju, Muhammad Munir, AravindhBabu R. Parthiban, Ashley Banyard, Jingyue Bao, Zhiliang Wang, Chrisostom Ayebazibwe, Gelagay Ayelet, Mehdi El Harrak, Mana Mahapatra, Geneviève Libeau, Carrie Batten, and Satya ParidaComments to Author 
Author affiliations: The Pirbright Institute, Pirbright, UK (M. Muniraju, M. Munir, M. Mahapatra, C. Batten, S. Parida); National Institute for Animal Biotechnology, Hyderabad, India (A.R. Parthiban, S Parida); Animal Health and Veterinary Laboratories Agency, Weybridge, UK (A.C. Banyard); China Animal Health and Epidemiology Centre, Qingdao, China (J. Bao, Z. Wang); National Animal Disease Diagnostics and Epidemiology Centre, Entebbe, Uganda (C. Ayebazibwe); National Veterinary Institute, Debre Zeit, Ethiopia (G. Ayelet); Société de Productions Pharmaceutiques et Vétérinaires, Rabat, Morocco (M. El Harrak); Le Centre de Cooperation Internationale en Recherche Agronomique pour le Développement, Montpellier (G. Libeau)

Main Article

Figure 1

Mean ratios of nonsynonymous (dN) to synonymous (dS) substitutions per site of concatenated coding regions of peste des petits ruminants virus genome. Proportion of dS substitutions per potential dS site and proportion of dN substitutions per potential dN site were calculated by using the method of Nei and Gojobori (29) and the suite of nucleotide analysis program (www.hiv.lanl.gov). Vertical dashed lines indicate gene junctions with sliding windows of size = 5 codons. dN/dS values ≥ 10 are show

Figure 1. Mean ratios of nonsynonymous (dN) to synonymous (dS) substitutions per site of concatenated coding regions of peste des petits ruminants virus genome. Proportion of dS substitutions per potential dS site and proportion of dN substitutions per potential dN site were calculated by using the method of Nei and Gojobori (29) and the suite of nucleotide analysis program (www.hiv.lanl.gov). Vertical dashed lines indicate gene junctions with sliding windows of size = 5 codons. dN/dS values ≥ 10 are shown as 10. Numbers along baseline indicate coding regions (basepairs) of individual genes. N, nucleoprotein; P, phosphoprotein; M, matrix; F, fusion; H, hemagglutinin; L, large polymerase.

Main Article

References
  1. Dhar  P, Sreenivasa  BP, Barrett  T, Corteyn  M, Singh  RP, Bandyopadhyay  SK. Recent epidemiology of peste des petits ruminants virus (PPRV). Vet Microbiol. 2002;88:1539 . DOIPubMed
  2. Banyard  AC, Parida  S, Batten  C, Oura  C, Kwiatek  O, Libeau  G. Global distribution of peste des petits ruminants virus and prospects for improved diagnosis and control. J Gen Virol. 2010;91:288597. DOIPubMed
  3. Gibbs  EP, Taylor  WP, Lawman  MJ, Bryant  J. Classification of peste des petits ruminants virus as the fourth member of the genus Morbillivirus. Intervirology. 1979;11:26874 . DOIPubMed
  4. de Swart  RL, Duprex  WP, Osterhaus  AD. Rinderpest eradication: lessons for measles eradication? Curr Opin Virol. 2012;2:330–4.
  5. Baron  MD, Parida  S, Oura  CA. Peste des petits ruminants: a suitable candidate for eradication? Vet Rec. 2011;169:1621. DOIPubMed
  6. Lembo  T, Oura  C, Parida  S, Hoare  R, Frost  L, Fyumagwa  R, Peste des petits ruminants infection among cattle and wildlife in northern Tanzania. Emerg Infect Dis. 2013;19:203740 . DOIPubMed
  7. Balamurugan  V, Sen  A, Venkatesan  G, Bhanot  V, Yadav  V, Bhanuprakash  V, Peste des petits ruminants virus detected in tissues from an Asiatic lion (Panthera leo persica) belongs to Asian lineage IV. J Vet Sci. 2012;13:2036 . DOIPubMed
  8. Khalafalla  AI, Saeed  IK, Ali  YH, Abdurrahman  MB, Kwiatek  O, Libeau  G, An outbreak of peste des petits ruminants (PPR) in camels in the Sudan. Acta Trop. 2010;116:1615. DOIPubMed
  9. Food and Agriculture Organization of the United Nations. Supporting livelihoods and supporting livelihoods and peste des petits ruminants (ppr) and small ruminant diseases control, 2013 [cited 2014 Sep 2]. http://www.fao.org/docrep/017/aq236e/aq236e00.htm
  10. Libeau  G, Diallo  A, Parida  S. Evolutionary genetics underlying the spread of peste des petits ruminants virus. Anim Front. 2014;4:1420. DOI
  11. Pybus  OG, Rambaut  A. Evolutionary analysis of the dynamics of viral infectious disease. Nat Rev Genet. 2009;10:54050. DOIPubMed
  12. Muniraju  M, El Harrak  M, Bao  J, Ramasamy Parthiban  AB, Banyard  AC, Batten  C, Complete genome sequence of a peste des petits ruminants virus recovered from an alpine goat during an outbreak in Morocco in 2008. Genome Announc. 2013;1:e00096–13.
  13. Chard  LS, Bailey  DS, Dash  P, Banyard  AC, Barrett  T. Full genome sequences of two virulent strains of peste-des-petits ruminants virus, the Côte d’Ivoire 1989 and Nigeria 1976 strains. Virus Res. 2008;136:1927. DOIPubMed
  14. Diallo  A, Barrett  T, Barbron  M, Meyer  G, Lefevre  PC. Cloning of the nucleocapsid protein gene of peste-des-petits-ruminants virus: relationship to other morbilliviruses. J Gen Virol. 1994;75:2337. DOIPubMed
  15. Furley  CW, Taylor  WP, Obi  TU. An outbreak of peste des petits ruminants in a zoological collection. Vet Rec. 1987;121:4437. DOIPubMed
  16. Taylor  WP, al Busaidy  S, Barrett  T. The epidemiology of peste des petits ruminants in the Sultanate of Oman. Vet Microbiol. 1990;22:34152. DOIPubMed
  17. Roeder  PL, Abraham  G, Kenfe  G, Barrett  T. Peste des petits ruminants in Ethiopian goats. Trop Anim Health Prod. 1994;26:6973. DOIPubMed
  18. Bao  J, Wang  Q, Parida  S, Liu  C, Zhang  L, Zhao  W, Complete genome sequence of a peste des petits ruminants virus recovered from wild bharal in Tibet, China. J Virol. 2012;86:108856. DOIPubMed
  19. Wang  Z, Bao  J, Wu  X, Liu  Y, Li  L, Liu  C, Peste des petits ruminants virus in Tibet, China. Emerg Infect Dis. 2009;15:299301. DOIPubMed
  20. Bailey  D, Banyard  A, Dash  P, Ozkul  A, Barrett  T. Full genome sequence of peste des petits ruminants virus, a member of the Morbillivirus genus. Virus Res. 2005;110:11924. DOIPubMed
  21. Hall  TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series. 1999;41:958.
  22. Pond  SL, Frost  SD, Muse  SV. HyPhy: hypothesis testing using phylogenies. Bioinformatics. 2005;21:6769. DOIPubMed
  23. Drummond  AJ, Suchard  MA, Xie  D, Rambaut  A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol. 2012;29:196973. DOIPubMed
  24. Miller  MA, Pfeiffer  W, Schwartz  T. Creating the CIPRES science gateway for inference of large phylogenetic trees. Presented at: Proceedings of the Gateway Computing Environments Workshop (GCE); 2010 Nov 14; New Orleans, Louisiana, USA; p. 1– 8.
  25. Posada  D. jModelTest: phylogenetic model averaging. Mol Biol Evol. 2008;25:12536. DOIPubMed
  26. Kass  RE, Raftery  AE. Bayes factors. J Am Stat Assoc. 1995;90:77395. DOI
  27. Lemey  P, Rambaut  A, Drummond  AJ, Suchard  MA. Bayesian phylogeography finds its roots. PLOS Comput Biol. 2009;5:e1000520. DOIPubMed
  28. Radecke  F, Spielhofer  P, Schneider  H, Kaelin  K, Huber  M, Dotsch  C, Rescue of measles viruses from cloned DNA. EMBO J. 1995;14:577384 .PubMed
  29. Nei  M, Gojobori  T. Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol. 1986;3:41826 .PubMed
  30. Han  GZ, Worobey  M. Homologous recombination in negative sense RNA viruses. Viruses. 2011;3:135873. DOIPubMed
  31. Denison  MR, Graham  RL, Donaldson  EF, Eckerle  LD, Baric  RS. Coronaviruses: an RNA proofreading machine regulates replication fidelity and diversity. RNA Biol. 2011;8:2709. DOIPubMed
  32. Pomeroy  LW, Bjornstad  ON, Holmes  EC. The evolutionary and epidemiological dynamics of the paramyxoviridae. J Mol Evol. 2008;66:98106. DOIPubMed
  33. Furuse  Y, Suzuki  A, Oshitani  H. Origin of measles virus: divergence from rinderpest virus between the 11th and 12th centuries. Virol J. 2010;7:52. DOIPubMed
  34. Wertheim  JO, Kosakovsky Pond  SL. Purifying selection can obscure the ancient age of viral lineages. Mol Biol Evol. 2011;28:335565. DOIPubMed
  35. Jenkins  GM, Rambaut  A, Pybus  OG, Holmes  EC. Rates of molecular evolution in RNA viruses: a quantitative phylogenetic analysis. J Mol Evol. 2002;54:15665. DOIPubMed
  36. Gargadennec  L, Lalanne  A. Peste des petits ruminants [in French]. Bulletin des Services Zootechniques et des Epizzoties de l’Afrique Occidentale Francaise. 1942;5:1621.
  37. Biek  R, Drummond  AJ, Poss  M. A virus reveals population structure and recent demographic history of its carnivore host. Science. 2006;311:53841. DOIPubMed
  38. Lemey  P, Suchard  M, Rambaut  A. Reconstructing the initial global spread of a human influenza pandemic: a Bayesian spatial-temporal model for the global spread of H1N1pdm. PLoS Curr. 2009;1:RRN1031. DOIPubMed
  39. Diallo  A. Rinderpest and peste des petits ruminants. Constant threats against livestock in many countries [in French]. Impact Sci Soc. 1988;150:191204.
  40. Sen  A, Saravanan  P, Balamurugan  V, Rajak  KK, Sudhakar  SB, Bhanuprakash  V, Vaccines against peste des petits ruminants virus. Expert Rev Vaccines. 2010;9:78596. DOIPubMed

Main Article

1Preliminary results were presented at the 15th International Negative Strand Virus Meeting, June 16–21, 2013, Granada, Spain.

Page created: November 18, 2014
Page updated: November 18, 2014
Page reviewed: November 18, 2014
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external