Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 21, Number 12—December 2015
Dispatch

Japanese Macaques (Macaca fuscata) as Natural Reservoir of Bartonella quintana

Shingo Sato, Hidenori Kabeya, Aika Yoshino, Wataru Sekine, Kazuo Suzuki, Hidetoshi B. Tamate, Shouki Yamazaki, Bruno B. Chomel, and Soichi MaruyamaComments to Author 
Author affiliations: Nihon University, Fujisawa, Japan (S. Sato, H. Kabeya, A. Yoshino, W. Sekine, S. Maruyama); Hikiiwa Park Center, Tanabe, Japan (K. Suzuki); Yamagata University, Yamagata, Japan (H.B. Tamate); Japan Wildlife Research Center, Tokyo, Japan (S. Yamazki); School of Veterinary Medicine, University of California, Davis, California, USA (B.B. Chomel)

Main Article

Figure 2

Phylogenetic tree showing the genetic relationship among Bartonella quintana strains from humans and macaques. The tree was constructed from the concatenated sequences (4,270 bp) of the 9 loci used for multilocus sequence typing by using the maximum-likelihood method based on the Tamura 3-parameter model in MEGA6 (13). The 22 sequence types (STs) of B. quintana strains from humans (STs 1–7), cynomolgus macaques (STs 8–4), rhesus macaques (STs 15–21), and Japanese macaques (ST22) were included in

Figure 2. Phylogenetic tree showing the genetic relationship among Bartonella quintana strains from humans and macaques. The tree was constructed from the concatenated sequences (4,270 bp) of the 9 loci used for multilocus sequence typing by using the maximum-likelihood method based on the Tamura 3-parameter model in MEGA6 (13). The 22 sequence types (STs) of B. quintana strains from humans (STs 1–7), cynomolgus macaques (STs 8–4), rhesus macaques (STs 15–21), and Japanese macaques (ST22) were included in the tree. Colored rectangles show 4 groups classified by host species. The scale bar indicates estimated evolutionary distance. Bootstrap values were obtained with 1,000 replicates. Only bootstrap replicates >50% are noted.

Main Article

References
  1. Foucault  C, Brouqui  P, Raoult  D. Bartonella quintana characteristics and clinical management. Emerg Infect Dis. 2006;12:21723 . DOIPubMedGoogle Scholar
  2. Deng  H, Le Rhun  D, Buffet  JP, Cotte  V, Read  A, Birtles  RJ, Strategies of exploitation of mammalian reservoirs by Bartonella species. Vet Res. 2012;43:15. DOIPubMedGoogle Scholar
  3. O’Rourke  LG, Pitulle  C, Hegarty  BC, Kraycirik  S, Killary  KA, Grosenstein  P, Bartonella quintana in cynomolgus monkey (Macaca fascicularis). Emerg Infect Dis. 2005;11:19314. DOIPubMedGoogle Scholar
  4. Maggi  RG, Mascarelli  PE, Balakrishnan  N, Rohde  CM, Kelly  CM, Ramaiah  L, “Candidatus Mycoplasma haemomacaque” and Bartonella quintana bacteremia in cynomolgus monkeys. J Clin Microbiol. 2013;51:140811. DOIPubMedGoogle Scholar
  5. Huang  R, Liu  Q, Li  G, Li  D, Song  X, Birtles  RJ, Bartonella quintana infections in captive monkeys, China. Emerg Infect Dis. 2011;17:17079. DOIPubMedGoogle Scholar
  6. Li  H, Bai  JY, Wang  LY, Zeng  L, Shi  YS, Qiu  ZL, Genetic diversity of Bartonella quintana in macaques suggests zoonotic origin of trench fever. Mol Ecol. 2013;22:211827. DOIPubMedGoogle Scholar
  7. Fooden  J, Aimi  M. Systematic review of Japanese macaques, Macaca fuscata (Gray, 1870). Fieldiana Zoology. 2005;104:1198.
  8. Zhang  P, Chomel  BB, Schau  MK, Goo  JS, Droz  S, Kelminson  KL, A family of variably expressed outer-membrane proteins (Vomp) mediates adhesion and autoaggregation in Bartonella quintana. Proc Natl Acad Sci U S A. 2004;101:136305 . DOIPubMedGoogle Scholar
  9. Norman  AF, Regnery  R, Jameson  P, Greene  C, Krause  DC. Differentiation of Bartonella-like isolates at the species level by PCR-restriction fragment length polymorphism in the citrate synthase gene. J Clin Microbiol. 1995;33:1797803 .PubMedGoogle Scholar
  10. Kabeya  H, Inoue  K, Izumi  Y, Morita  T, Imai  S, Maruyama  S. Bartonella species in wild rodents and fleas from them in Japan. J Vet Med Sci. 2011;73:15617. DOIPubMedGoogle Scholar
  11. Roux  V, Raoult  D. The 16S–23S rRNA intergenic spacer region of Bartonella (Rochalimaea) species is longer than usually described in other bacteria. Gene. 1995;156:10711. DOIPubMedGoogle Scholar
  12. Arvand  M, Raoult  D, Feil  EJ. Multi-locus sequence typing of a geographically and temporally diverse sample of the highly clonal human pathogen Bartonella quintana. PLoS ONE. 2010;5:e9765. DOIPubMedGoogle Scholar
  13. Tamura  K, Stecher  G, Peterson  D, Filipski  A, Kumar  S. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol. 2013;30:27259. DOIPubMedGoogle Scholar
  14. Chomel  BB, Boulouis  HJ, Breitschwerdt  EB, Kasten  RW, Vayssier-Taussat  M, Birtles  RJ, Ecological fitness and strategies of adaptation of Bartonella species to their hosts and vectors. Vet Res. 2009;40:29. DOIPubMedGoogle Scholar
  15. Bittar  F, Keita  MB, Lagier  JC, Peeters  M, Delaporte  E, Raoult  D. Gorilla gorilla gorilla gut: a potential reservoir of pathogenic bacteria as revealed using culturomics and molecular tools. Sci Rep. 2014;4:7174.

Main Article

Page created: November 17, 2015
Page updated: November 17, 2015
Page reviewed: November 17, 2015
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external