Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 22, Number 2—February 2016

Epidemiology of Serotype 1 Invasive Pneumococcal Disease, South Africa, 2003–2013

Claire von MollendorfComments to Author , Stefano Tempia, Cheryl Cohen, Susan Meiring, Linda de Gouveia, Vanessa Quan, Sarona Lengana, Alan Karstaedt, Halima Dawood, Sharona Seetharam, Ruth Lekalakala, Shabir A. Madhi, Keith P. Klugman, Anne von Gottberg, and for the Group for Enteric, Respiratory, and Meningeal Disease Surveillance in South Africa (GERMS-SA)
Author affiliations: National Institute for Communicable Diseases, Johannesburg, South Africa (C. von Mollendorf, C. Cohen, S. Tempia, S. Meiring, L. de Gouveia, V. Quan, S. Lengana, S.A. Madhi, K.P. Klugman, A. von Gottberg); University of the Witwatersrand, Johannesburg (C. von Mollendorf, C. Cohen, A. Karstaedt, S. Seetharam, S.A. Madhi, A. von Gottberg); Centers for Disease Control and Prevention, Atlanta, Georgia, USA (S. Tempia), and Pretoria, South Africa (S. Tempia); Chris Hani Baragwanath Academic Hospital, Johannesburg (A. Karstaedt, S. Seetharam); Pietermaritzburg Metropolitan Hospital, Pietermaritzburg, South Africa (H. Dawood); University of KwaZulu-Natal, Pietermaritzburg (H. Dawood); National Health Laboratory Service, Johannesburg (S. Seetharam); National Health Laboratory Service, Polokwane, South Africa (R. Lekalakala); University of Limpopo, Polokwane (R. Lekalakala); Emory University, Atlanta, Georgia, USA (K.P. Klugman)

Main Article

Table 2

Factors associated with death in patients <5 years of age with serotype 1 invasive pneumococcal disease, South Africa, 2003–2013*

Variable Univariate analysis
Multivariable analysis
No. deaths/no. cases (%) OR (95% CI) p value aOR (95% CI) p value
Age group, y
<1 102/355 (29) 11.49 (2.75–47.95) <0.001 12.06 (1.45–100.26) 0.02
1 22/154 (14) 4.75 (1.08–20.88) 3.83 (0.41–35.35)
2 11/94 (12) 3.78 (0.81–17.69) 1.30 (0.12–14.34)
3 6/73 (8) 2.55 (0.49–13.14) 1.40 (0.12–15.82)
2/59 (3)


Gauteng 53/327 (16) Reference 0.001
Western Cape 15/111 (14) 0.81 (0.44–1.50)
KwaZulu-Natal 26/111 (23) 1.58 (0.93–2.68)
Eastern Cape 12/44 (27) 1.94 (0.94–4.01)
Free State 11/62 (18) 1.11 (0.55–2.28)
Mpumalanga 7/19 (37) 3.02 (1.13–8.01)
North-West 11/23 (48) 4.74 (1.99–11.30)
Limpopo 7/21 (33) 2.58 (1.00–6.71)
Northern Cape
1/17 (6)
0.32 (0.04–2.49)

Medical condition/treatment
Length of hospital stay, d
<3 94/209 (45) Reference <0.001 Reference <0.001
4–14 36/354 (10) 0.14 (0.09–0.21) 0.06 (0.03–0.15)
>15 10/160 (6) 0.08 (0.04–0.16) 0.02 (0.01–0.07)
Pitt bacteremia score†
0–3 102/608 (17) Reference <0.001
>4 16/28 (58) 6.61 (3.04–14.40)
Underlying medical condition‡
No 55/343 (16) Reference 0.19 Reference 0.003
Yes 33/158 (21) 1.38 (0.86–2.23) 3.21 (1.49–6.91)
Antimicrobial drug use in 24 h before admission
No 82/504 (16) Reference 0.05
Yes 15/56 (26) 1.88 (1.00–3.56)
HIV status
HIV-uninfected 37/252 (15) Reference 0.13 Reference 0.005
HIV-infected 52/263 (20) 1.43 (0.90–2.27) 2.82 (1.36–5.84)
No 44/277 (16) Reference 0.03
43/176 (24)
1.71 (1.07–2.74)

Clinical syndrome/specimen type
Specimen type
CSF 59/166 (36) Reference <0.001
Blood 83/530 (16) 0.34 (0.23–0.50)
Other 1/39 (3) 0.05 (0.01–0.36)
Clinical syndrome¶
Meningitis 74/209 (35) Reference <0.001 Reference 0.0003
Pneumonia 50/410 (12) 0.25 (0.17–0.38) 0.25 (0.11–0.54)
Bacteremia 18/111 (16) 0.35 (0.20–0.63) 0.11 (0.03–0.42)

*All patients were reported from the enhanced Group for Enteric, Respiratory, and Meningeal Disease Surveillance in South Africa (GERMS-SA) surveillance sites. Only variables significant on univariate and multivariable analysis are shown. Variables not included in table are sex, year, previous hospital admission, prematurity, antimicrobial drug in previous 2 mo, and penicillin nonsusceptible invasive pneumococcal disease. aOR, adjusted odds ratio; OR, odds ratio.
†Pitt bacteremia score calculated using temperature, hypotension, mechanical ventilation, cardiac arrest and mental status. Severe disease defined as score of >4 points.
‡Includes asplenia or sickle cell anemia; chronic illness (i.e., chronic lung, renal, liver, cardiac disease, and diabetes); other immunocompromising conditions (i.e., organ transplant, primary immunodeficiency, immunotherapy, and malignancy, but excluding HIV); and other risk factors (i.e., head injury with possible cerebral spinal fluid leak, neurologic disorders, burns, and chromosomal abnormalities). Excludes malnutrition.
§Children with weight-for-age z-score of less than −2 (World Health Organization child growth standards 2009) (18), nutritional edema, or both.
¶Clinical diagnoses were made on the basis of documented discharge diagnoses in patient medical records, with clinical syndrome separated into 3 groups: meningitis, bacteremic pneumonia, and bacteremia without focus or other diagnosis (e.g., septic arthritis, endopthalmitis, peritonitis, pericarditis)

Main Article

  1. Ritchie  ND, Mitchell  TJ, Evans  TJ. What is different about serotype 1 pneumococci? Future Microbiol. 2012;7:3346. DOIPubMedGoogle Scholar
  2. Gessner  BD, Mueller  JE, Yaro  S. African meningitis belt pneumococcal disease epidemiology indicates a need for an effective serotype 1 containing vaccine, including for older children and adults. BMC Infect Dis. 2010;10:22. DOIPubMedGoogle Scholar
  3. Fuchs  I, Dagan  R, Givon-Lavi  N, Greenberg  D. Serotype 1 childhood invasive pneumococcal disease has unique characteristics compared to disease caused by other Streptococcus pneumoniae serotypes. Pediatr Infect Dis J. 2013;32:6148. DOIPubMedGoogle Scholar
  4. Calbo  E, Diaz  A, Canadell  E, Fabrega  J, Uriz  S, Xercavins  M, Invasive pneumococcal disease among children in a health district of Barcelona: early impact of pneumococcal conjugate vaccine. Clin Microbiol Infect. 2006;12:86772. DOIPubMedGoogle Scholar
  5. Aguiar  SI, Brito  MJ, Goncalo-Marques  J, Melo-Cristino  J, Ramirez  M. Serotypes 1, 7F and 19A became the leading causes of pediatric invasive pneumococcal infections in Portugal after 7 years of heptavalent conjugate vaccine use. Vaccine. 2010;28:516773. DOIPubMedGoogle Scholar
  6. Feikin  DR, Kagucia  EW, Loo  JD, Link-Gelles  R, Puhan  MA, Cherian  T, Serotype-specific changes in invasive pneumococcal disease after pneumococcal conjugate vaccine introduction: a pooled analysis of multiple surveillance sites. PLoS Med. 2013;10:e1001517. DOIPubMedGoogle Scholar
  7. Johnson  HL, Deloria-Knoll  M, Levine  OS, Stoszek  SK, Freimanis Hance  L, Reithinger  R, Systematic evaluation of serotypes causing invasive pneumococcal disease among children under five: the pneumococcal global serotype project. PLoS Med. 2010;7:e1000348. DOIPubMedGoogle Scholar
  8. Hanquet  G, Kissling  E, Fenoll  A, George  R, Lepoutre  A, Lernout  T, Pneumococcal serotypes in children in 4 European countries. Emerg Infect Dis. 2010;16:142839. DOIPubMedGoogle Scholar
  9. Jefferies  JM, Smith  AJ, Edwards  GF, McMenamin  J, Mitchell  TJ, Clarke  SC. Temporal analysis of invasive pneumococcal clones from Scotland illustrates fluctuations in diversity of serotype and genotype in the absence of pneumococcal conjugate vaccine. J Clin Microbiol. 2010;48:8796. DOIPubMedGoogle Scholar
  10. Miller  E, Andrews  NJ, Waight  PA, Slack  MP, George  RC. Effectiveness of the new serotypes in the 13-valent pneumococcal conjugate vaccine. Vaccine. 2011;29:912731. DOIPubMedGoogle Scholar
  11. Klugman  KP, Madhi  SA, Adegbola  RA, Cutts  F, Greenwood  B, Hausdorff  WP. Timing of serotype 1 pneumococcal disease suggests the need for evaluation of a booster dose. Vaccine. 2011;29:33723. DOIPubMedGoogle Scholar
  12. Cutts  FT, Zaman  SM, Enwere  G, Jaffar  S, Levine  OS, Okoko  JB, Efficacy of nine-valent pneumococcal conjugate vaccine against pneumonia and invasive pneumococcal disease in The Gambia: randomised, double-blind, placebo-controlled trial. Lancet. 2005;365:113946. DOIPubMedGoogle Scholar
  13. World Health Organization. WHO UNICEF estimates of PCV3 coverage [cited 2015 Aug 14].
  14. von Gottberg  A, de Gouveia  L, Tempia  S, Quan  V, Meiring  S, von Mollendorf  C, Effects of vaccination on invasive pneumococcal disease in South Africa. N Engl J Med. 2014;371:188999. DOIPubMedGoogle Scholar
  15. Carvalho  MG, Tondella  ML, McCaustland  K, Weidlich  L, McGee  L, Mayer  LW, Evaluation and improvement of real-time PCR assays targeting lytA, ply, and psaA genes for detection of pneumococcal DNA. J Clin Microbiol. 2007;45:24606. DOIPubMedGoogle Scholar
  16. Kulldorff  M. A spatial scan statistic. Comm Stat Theory Methods. 1997;26:148196. DOIGoogle Scholar
  17. Kulldorff  M, Nagarwalla  N. Spatial disease clusters: detection and inference. Stat Med. 1995;14:799810. DOIPubMedGoogle Scholar
  18. WHO Multicentre Growth Reference Study Group. WHO Child Growth Standards: Growth velocity based on weight, length and head circumference: Methods and development. Geneva: World Health Organization; 2009 [cited 2015 Aug 14].
  19. Lagos  R, Muñoz  A, San Martin  O, Maldonado  A, Hormazabal  JC, Blackwelder  WC, Age- and serotype-specific pediatric invasive pneumococcal disease: insights from systematic surveillance in Santiago, Chile, 1994–2007. J Infect Dis. 2008;198:180917. DOIPubMedGoogle Scholar
  20. Le Hello  S, Watson  M, Levy  M, Marcon  S, Brown  M, Yvon  JF, Invasive serotype 1 Streptococcus pneumoniae outbreaks in the South Pacific from 2000 to 2007. J Clin Microbiol. 2010;48:296871. DOIPubMedGoogle Scholar
  21. Antonio  M, Hakeem  I, Awine  T, Secka  O, Sankareh  K, Nsekpong  D, Seasonality and outbreak of a predominant Streptococcus pneumoniae serotype 1 clone from The Gambia: expansion of ST217 hypervirulent clonal complex in West Africa. BMC Microbiol. 2008;8:198. DOIPubMedGoogle Scholar
  22. Johnson  LF. Access to antiretroviral treatment in South Africa, 2004–2011. Southern African Journal of HIV Medicine. 2012;13:227.
  23. Hausdorff  WP, Siber  G, Paradiso  PR. Geographical differences in invasive pneumococcal disease rates and serotype frequency in young children. Lancet. 2001;357:9502. DOIPubMedGoogle Scholar
  24. Ciruela  P, Soldevila  N, Selva  L, Hernández  S, Garcia-Garcia  JJ, Moraga  F, Are risk factors associated with invasive pneumococcal disease according to different serotypes? Hum Vaccin Immunother. 2013;9:7129. DOIPubMedGoogle Scholar
  25. Hausdorff  WP, Feikin  DR, Klugman  KP. Epidemiological differences among pneumococcal serotypes. Lancet Infect Dis. 2005;5:8393. DOIPubMedGoogle Scholar
  26. Porat  N, Trefler  R, Dagan  R. Persistence of two invasive Streptococcus pneumoniae clones of serotypes 1 and 5 in comparison to that of multiple clones of serotypes 6B and 23F among children in southern Israel. J Clin Microbiol. 2001;39:182732. DOIPubMedGoogle Scholar
  27. Jones  N, Huebner  R, Khoosal  M, Crewe-Brown  H, Klugman  K. The impact of HIV on Streptococcus pneumoniae bacteraemia in a South African population. AIDS. 1998;12:217784. DOIPubMedGoogle Scholar
  28. Scott  JA, Hall  AJ, Hannington  A, Edwards  R, Mwarumba  S, Lowe  B, Serotype distribution and prevalence of resistance to benzylpenicillin in three representative populations of Streptococcus pneumoniae isolates from the coast of Kenya. Clin Infect Dis. 1998;27:144250. DOIPubMedGoogle Scholar
  29. Brueggemann  AB, Peto  TE, Crook  DW, Butler  JC, Kristinsson  KG, Spratt  BG. Temporal and geographic stability of the serogroup-specific invasive disease potential of Streptococcus pneumoniae in children. J Infect Dis. 2004;190:120311. DOIPubMedGoogle Scholar
  30. Hausdorff  WP. The roles of pneumococcal serotypes 1 and 5 in paediatric invasive disease. Vaccine. 2007;25:240612. DOIPubMedGoogle Scholar
  31. Weinberger  DM, Harboe  ZB, Sanders  EA, Ndiritu  M, Klugman  KP, Ruckinger  S, Association of serotype with risk of death due to pneumococcal pneumonia: a meta-analysis. Clin Infect Dis. 2010;51:6929. DOIPubMedGoogle Scholar
  32. Cohen  C, Naidoo  N, Meiring  S, de Gouveia  L, von Mollendorf  C, Walaza  S, Streptococcus pneumoniae serotypes and mortality in adults and adolescents in South Africa: analysis of national surveillance data, 2003–2008. PLoS ONE. 2015;10:e0140185. DOIPubMedGoogle Scholar
  33. Martens  P, Worm  SW, Lundgren  B, Konradsen  HB, Benfield  T. Serotype-specific mortality from invasive Streptococcus pneumoniae disease revisited. BMC Infect Dis. 2004;4:21. DOIPubMedGoogle Scholar
  34. Magomani  V, Wolter  N, Tempia  S, du Plessis  M, de Gouveia  L, von Gottberg  A. Challenges of using molecular serotyping for surveillance of pneumococcal disease. J Clin Microbiol. 2014;52:32716. DOIPubMedGoogle Scholar

Main Article

Page created: January 13, 2016
Page updated: January 13, 2016
Page reviewed: January 13, 2016
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.