Volume 22, Number 5—May 2016
Dispatch
Molecular Characterization of Canine Rabies Virus, Mali, 2006–2013
Table 1
Characteristics of 32 rabies virus samples from dogs, Mali, 2006–2013*
Virus | GenBank accession no. | Sample ID no. | Region | Quantitative RT-PCR Ct | Subgroup of Africa 2 lineage |
---|---|---|---|---|---|
RV01 | KP976113 | 420/2006 | Bamako | 28.51 | G |
RV04 | KP976114 | 345/2007 | Bamako | 30.19 | H |
RV05 | KP976130 | 352/2007 | Bamako | 25.35 | G |
RV06 | KP976125 | 58/2008 | Bamako | 24.09 | G |
RV09 | KP976126 | 146/2008 | Bamako | 27.51 | G |
RV10 | KP976122 | 154/2008 | Ségou | 25.75 | G |
RV11 | KP976124 | 167/2008 | Koulikoro | 23.97 | G |
RV14 | NA | 259/2008 | Bamako | 31.59 | H |
RV15 | KP976123 | 261/2008 | Ségou | 26.14 | G |
RV19 | NA | 530/2008 | Bamako | 27.85 | G |
RV20 | KP976117 | 003/2009 | Bamako | 32.82 | H |
RV22 | NA | 69/2009 | Bamako | 26.15 | H |
RV27 | NA | 118/2009 | Bamako | 32.30 | H |
RV44 | KP976129 | 587/2009 | Bamako | 26.22 | G |
RV50 | NA | 19/11/2010 | Bamako | 27.90 | G |
RV51 | NA | 42/2010 | Bamako | 28.59 | G |
RV56 | NA | 171/2010 | Koulikoro | 22.20 | G |
RV57 | KP976121 | 176/2010 | Gao | 21.90 | F |
RV60 | NA | 221/2010 | Bamako | 24.60 | H |
RV67 | NA | 603/2010 | Bamako | 21.30 | H |
RV68 | NA | 137/2011 | Bamako | 20.80 | H |
RV70 | KP976119 | 149/2011 | Bamako | 21.70 | H |
RV79 | NA | 339/2011 | Bamako | 24.90 | G |
RV81 | KP976127 | 357/2011 | Bamako | 34,20 | G |
RV84 | NA | 480/2011 | Bamako | 21.20 | G |
RV87 | KP976116 | 612/2011 | Bamako | 22.50 | H |
RV88 | KP976120 | 628/2011 | Koulikoro | 21.70 | H |
RV89 | NA | 674/2011 | Bamako | 20.20 | H |
RV90 | KP976118 | 688/2011 | Bamako | 30.80 | H |
RV93 | KP976115 | 223/2012 | Bamako | 23.20 | H |
RV95 | NA | 366/2012 | Bamako | 21.00 | G |
RV96 |
KP976128 |
100/2013 |
Bamako |
29.00 |
G |
*A fluorescent antibody test was conducted as described by Dean et al. (5). For each tested sample, test paper was impregnated with 100 μL of 10% brain suspension and subjected to molecular biological analysis. Of 100 samples tested, 32 showed positive results by this test. A conventional hemi-nested reverse transcription PCR (RT-PCR) was performed with rabies virus primers JW12–JW6 as described (9). All samples showed positive results by this test. A quantitative RT-PCR was performed with rabies primers JW12–N165-146 (10). This PCR detected >100 RNA copies/µL. The coefficient of determination (R2) was 0.999, the Y intercept was of 36.65, and efficiency was 99%. Samples in bold (n = 15) had duplicate sequences and were not subjected to phylogenetic analysis. ID, identification; Ct, cycle threshold; NA, not available. |
References
- World Health Organization. WHO expert consultation on rabies. Second report. World Health Organ Tech Rep Ser. 2013;982:1–139 .PubMedGoogle Scholar
- Cleaveland S, Fevre EM, Kaare M, Coleman PG. Estimating human rabies mortality in the United Republic of Tanzania from dog bite injuries. Bull World Health Organ. 2002;80:304–10 .PubMedGoogle Scholar
- Dao S, Abdillahi AM, Bougoudogo F, Toure K, Simbe C. Epidemiological aspects of human and animal rabies in the urban area of Bamako, Mali [in French]. Bull Soc Pathol Exot. 2006;99:183–6 .PubMedGoogle Scholar
- Mauti S, Traore A, Hattendorf J, Schelling E, Wasniewski M, Schereffer JL, Factors associated with dog rabies immunisation status in Bamako, Mali. Acta Trop. 2015;12:pii:S0001-706X(15)30139-X.
- Dean DJ, Abelseth MK, Atanasiu P. The fluorescent antibody test. In: Meslin FX, Kaplan MM, Koprowski H, editors. Laboratory techniques in rabies. 4th ed. Geneva: World Health Organization; 1996. p. 88–95.
- Kayali U, Mindekem R, Yemadji N, Oussiguere A, Naissengar S, Ndoutamia AG, Incidence of canine rabies in N’Djamena, Chad. Prev Vet Med. 2003;61:227–33. DOIPubMedGoogle Scholar
- Talbi C, Holmes EC, de Benedictis P, Faye O, Nakoune E, Gamatie D, Evolutionary history and dynamics of dog rabies virus in western and central Africa. J Gen Virol. 2009;90:783–91. DOIPubMedGoogle Scholar
- De Benedictis P, Sow A, Fusaro A, Veggiato C, Talbi C, Kaboré A, Phylogenetic analysis of rabies viruses from Burkina Faso, 2007. Zoonoses Public Health. 2010;57:e42–6. DOIPubMedGoogle Scholar
- Picard-Meyer E, Bruyere V, Barrat J, Tissot E, Barrat MJ, Cliquet F. Development of a hemi-nested RT-PCR method for the specific determination of European bat Lyssavirus 1. Comparison with other rabies diagnostic methods. Vaccine. 2004;22:1921–9. DOIPubMedGoogle Scholar
- Picard-Meyer E, Peytavin de Garam C, Schereffer JL, Marchal C, Robardet E, Cliquet F. Cross-platform evaluation of commercial real-time SYBR green RT-PCR kits for sensitive and rapid detection of European bat lyssavirus type 1. Biomed Res Int. 2015;2015:839518. .DOIPubMedGoogle Scholar
- Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol. 2013;30:2725–9. DOIPubMedGoogle Scholar
- Clement M, Posada D, Crandall KA. TCS: a computer program to estimate gene genealogies. Mol Ecol. 2000;9:1657–9. DOIPubMedGoogle Scholar
- Fèvre EM, Bronsvoort BM, Hamilton KA, Cleaveland S. Animal movements and the spread of infectious diseases. Trends Microbiol. 2006;14:125–31. DOIPubMedGoogle Scholar
- Talbi C, Lemey P, Suchard MA, Abdelatif E, Elharrak M, Jalal N, Phylodynamics and human-mediated dispersal of a zoonotic virus. PLoS Pathog. 2010;6:e1001166 . DOIPubMedGoogle Scholar