Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 23, Number 4—April 2017
Research

Three Divergent Subpopulations of the Malaria Parasite Plasmodium knowlesi

Paul C.S. DivisComments to Author , Lee C. Lin, Jeffrine J. Rovie-Ryan, Khamisah A. Kadir, Fread Anderios, Shamilah Hisam, Reuben S.K. Sharma, Balbir Singh, and David J. Conway
Author affiliations: Malaria Research Centre, Universiti Malaysia Sarawak, Kota Samarahan, Sarawak, Malaysia (P.C.S. Divis, K.A. Kadir, B. Singh, D.J. Conway); London School of Hygiene and Tropical Medicine, London, United Kingdom (P.C.S. Divis, D.J. Conway); Universiti Putra Malaysia, Serdang, Malaysia (L.C. Lin, R.S.K. Sharma); Department of Wildlife and National Parks Peninsular Malaysia, Kuala Lumpur, Malaysia (J.J. Rovie-Ryan); Sabah State Public Health Laboratory, Kota Kinabalu, Malaysia (F. Anderios); Institute for Medical Research, Kuala Lumpur (S. Hisam)

Main Article

Figure 4

Population genetic structure of combined 751 P. knowlesi infections across Malaysia and 7 laboratory isolates. A) The inference of genetic clusters on complete 10-locus genotype dataset using the STRUCTURE analysis with LOCPRIOR model (22) showed 3 major subpopulation structures (K = 3, ΔK = 98.73), corresponding to those shown in Figure 3. Numbers in parentheses indicate number of isolates. B, C) Using a priori K = 3, individual genotypes were assigned to the most probable subpopulation cluster

Figure 4. Population genetic structure of combined 751 P. knowlesi infections across Malaysia and 7 laboratory isolates. A) The inference of genetic clusters on complete 10-locus genotype dataset using the STRUCTURE analysis with LOCPRIOR model (22) showed 3 major subpopulation structures (K = 3, ΔK = 98.73), corresponding to those shown in Figure 3. Numbers in parentheses indicate number of isolates. B, C) Using a priori K = 3, individual genotypes were assigned to the most probable subpopulation clusters using independent genetic distance matrix inferred by the principal coordinate analysis (B) and discriminant analysis of principal component (DAPC) (C). In DAPC, clusters depicted as ellipses indicated the variance within the clusters and centered by K-means. hm, human; lt, long-tailed macaque; PCo, principal coordinate; pt, pig-tailed macaque.

Main Article

References
  1. Singh  B, Daneshvar  C. Human infections and detection of Plasmodium knowlesi. Clin Microbiol Rev. 2013;26:16584. DOIPubMedGoogle Scholar
  2. Setiadi  W, Sudoyo  H, Trimarsanto  H, Sihite  BA, Saragih  RJ, Juliawaty  R, et al. A zoonotic human infection with simian malaria, Plasmodium knowlesi, in Central Kalimantan, Indonesia. Malar J. 2016;15:218. DOIPubMedGoogle Scholar
  3. Yusof  R, Lau  YL, Mahmud  R, Fong  MY, Jelip  J, Ngian  HU, et al. High proportion of knowlesi malaria in recent malaria cases in Malaysia. Malar J. 2014;13:168. DOIPubMedGoogle Scholar
  4. William  T, Rahman  HA, Jelip  J, Ibrahim  MY, Menon  J, Grigg  MJ, et al. Increasing incidence of Plasmodium knowlesi malaria following control of P. falciparum and P. vivax Malaria in Sabah, Malaysia. PLoS Negl Trop Dis. 2013;7:e2026. DOIPubMedGoogle Scholar
  5. Fornace  KM, Nuin  NA, Betson  M, Grigg  MJ, William  T, Anstey  NM, et al. Asymptomatic and submicroscopic carriage of Plasmodium knowlesi malaria in household and community members of clinical cases in Sabah, Malaysia. J Infect Dis. 2016;213:7847. DOIPubMedGoogle Scholar
  6. Vythilingam  I, Wong  ML, Wan-Yussof  WS. Current status of Plasmodium knowlesi vectors: a public health concern? Parasitology. 2016;19. DOIPubMedGoogle Scholar
  7. Lee  KS, Divis  PC, Zakaria  SK, Matusop  A, Julin  RA, Conway  DJ, et al. Plasmodium knowlesi: reservoir hosts and tracking the emergence in humans and macaques. PLoS Pathog. 2011;7:e1002015. DOIPubMedGoogle Scholar
  8. Vythilingam  I, Noorazian  YM, Huat  TC, Jiram  AI, Yusri  YM, Azahari  AH, et al. Plasmodium knowlesi in humans, macaques and mosquitoes in peninsular Malaysia. Parasit Vectors. 2008;1:26. DOIPubMedGoogle Scholar
  9. Divis  PC, Singh  B, Anderios  F, Hisam  S, Matusop  A, Kocken  CH, et al. Admixture in humans of two divergent Plasmodium knowlesi populations associated with different macaque host species. PLoS Pathog. 2015;11:e1004888. DOIPubMedGoogle Scholar
  10. Ahmed  MA, Fong  MY, Lau  YL, Yusof  R. Clustering and genetic differentiation of the normocyte binding protein (nbpxa) of Plasmodium knowlesi clinical isolates from Peninsular Malaysia and Malaysia Borneo. Malar J. 2016;15:241. DOIPubMedGoogle Scholar
  11. Ahmed  AM, Pinheiro  MM, Divis  PC, Siner  A, Zainudin  R, Wong  IT, et al. Disease progression in Plasmodium knowlesi malaria is linked to variation in invasion gene family members. PLoS Negl Trop Dis. 2014;8:e3086. DOIPubMedGoogle Scholar
  12. Pinheiro  MM, Ahmed  MA, Millar  SB, Sanderson  T, Otto  TD, Lu  WC, et al. Plasmodium knowlesi genome sequences from clinical isolates reveal extensive genomic dimorphism. PLoS One. 2015;10:e0121303. DOIPubMedGoogle Scholar
  13. Fong  MY, Lau  YL, Chang  PY, Anthony  CN. Genetic diversity, haplotypes and allele groups of Duffy binding protein (PkDBPαII) of Plasmodium knowlesi clinical isolates from Peninsular Malaysia. Parasit Vectors. 2014;7:161. DOIPubMedGoogle Scholar
  14. Fong  MY, Rashdi  SA, Yusof  R, Lau  YL. Distinct genetic difference between the Duffy binding protein (PkDBPαII) of Plasmodium knowlesi clinical isolates from North Borneo and Peninsular Malaysia. Malar J. 2015;14:91. DOIPubMedGoogle Scholar
  15. Yusof  R, Ahmed  MA, Jelip  J, Ngian  HU, Mustakim  S, Hussin  HM, et al. Phylogeographic evidence for 2 genetically distinct zoonotic Plasmodium knowlesi parasites, Malaysia. Emerg Infect Dis. 2016;22:137180. DOIPubMedGoogle Scholar
  16. Assefa  S, Lim  C, Preston  MD, Duffy  CW, Nair  MB, Adroub  SA, et al. Population genomic structure and adaptation in the zoonotic malaria parasite Plasmodium knowlesi. Proc Natl Acad Sci U S A. 2015;112:1302732. DOIPubMedGoogle Scholar
  17. Kocken  CH, Ozwara  H, van der Wel  A, Beetsma  AL, Mwenda  JM, Thomas  AW. Plasmodium knowlesi provides a rapid in vitro and in vivo transfection system that enables double-crossover gene knockout studies. Infect Immun. 2002;70:65560. DOIPubMedGoogle Scholar
  18. Li  H, Handsaker  B, Wysoker  A, Fennell  T, Ruan  J, Homer  N, et al.; 1000 Genome Project Data Processing Subgroup. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009;25:20789. DOIPubMedGoogle Scholar
  19. Danecek  P, Auton  A, Abecasis  G, Albers  CA, Banks  E, DePristo  MA, et al.; 1000 Genomes Project Analysis Group. The variant call format and VCFtools. Bioinformatics. 2011;27:21568. DOIPubMedGoogle Scholar
  20. Rutherford  K, Parkhill  J, Crook  J, Horsnell  T, Rice  P, Rajandream  MA, et al. Artemis: sequence visualization and annotation. Bioinformatics. 2000;16:9445. DOIPubMedGoogle Scholar
  21. Pritchard  JK, Stephens  M, Donnelly  P. Inference of population structure using multilocus genotype data. Genetics. 2000;155:94559.PubMedGoogle Scholar
  22. Hubisz  MJ, Falush  D, Stephens  M, Pritchard  JK. Inferring weak population structure with the assistance of sample group information. Mol Ecol Resour. 2009;9:132232. DOIPubMedGoogle Scholar
  23. Earl  DA, vonHoldt  BM. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour. 2012;4:35961. DOIGoogle Scholar
  24. Evanno  G, Regnaut  S, Goudet  J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol. 2005;14:261120. DOIPubMedGoogle Scholar
  25. Jakobsson  M, Rosenberg  NA. CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics. 2007;23:18016. DOIPubMedGoogle Scholar
  26. Peakall  R, Smouse  PE. GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Resour. 2006;6:28895. DOIGoogle Scholar
  27. Jombart  T, Devillard  S, Balloux  F. Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet. 2010;11:94. DOIPubMedGoogle Scholar
  28. Goudet  J. FSTAT (Version 1.2): A computer program to calculate F-statistics. J Hered. 1995;86:4856. DOIGoogle Scholar
  29. Haubold  B, Hudson  RR. LIAN 3.0: detecting linkage disequilibrium in multilocus data. Linkage Analysis. Bioinformatics. 2000;16:8478. DOIPubMedGoogle Scholar
  30. Putaporntip  C, Kuamsab  N, Jongwutiwes  S. Sequence diversity and positive selection at the Duffy-binding protein genes of Plasmodium knowlesi and P. cynomolgi: Analysis of the complete coding sequences of Thai isolates. Infect Genet Evol. 2016;44:36775. DOIPubMedGoogle Scholar
  31. Liedigk  R, Kolleck  J, Böker  KO, Meijaard  E, Md-Zain  BM, Abdul-Latiff  MA, et al. Mitogenomic phylogeny of the common long-tailed macaque (Macaca fascicularis fascicularis). BMC Genomics. 2015;16:222. DOIPubMedGoogle Scholar
  32. Voris  HK. Maps of Pleistocene sea levels in Southeast Asia: shorelines, river systems and time durations. J Biogeogr. 2000;27:1153–67. DOIGoogle Scholar
  33. Esselstyn  JA, Widmann  P, Heaney  LR. The mammals of Palawan Island, Philippines. Proc Biol Soc Wash. 2004;117:271302.
  34. Meijaard  E. Mammals of south-east Asian islands and their Late Pleistocene environments. J Biogeogr. 2003;30:124557. DOIGoogle Scholar
  35. Smith  DG, Ng  J, George  D, Trask  JS, Houghton  P, Singh  B, et al. A genetic comparison of two alleged subspecies of Philippine cynomolgus macaques. Am J Phys Anthropol. 2014;155:13648. DOIPubMedGoogle Scholar
  36. Muehlenbein  MP, Pacheco  MA, Taylor  JE, Prall  SP, Ambu  L, Nathan  S, et al. Accelerated diversification of nonhuman primate malarias in Southeast Asia: adaptive radiation or geographic speciation? Mol Biol Evol. 2015;32:42239. DOIPubMedGoogle Scholar
  37. Ziegler  T, Abegg  C, Meijaard  E, Perwitasari-Farajallah  D, Walter  L, Hodges  JK, et al. Molecular phylogeny and evolutionary history of Southeast Asian macaques forming the M. silenus group. Mol Phylogenet Evol. 2007;42:80716. DOIPubMedGoogle Scholar
  38. Moyes  CL, Shearer  FM, Huang  Z, Wiebe  A, Gibson  HS, Nijman  V, et al. Predicting the geographical distributions of the macaque hosts and mosquito vectors of Plasmodium knowlesi malaria in forested and non-forested areas. Parasit Vectors. 2016;9:242. DOIPubMedGoogle Scholar

Main Article

Page created: March 17, 2017
Page updated: March 17, 2017
Page reviewed: March 17, 2017
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external