Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 24, Number 10—October 2018
Research

Molecular Evolution, Diversity, and Adaptation of Influenza A(H7N9) Viruses in China

Jing LuComments to Author , Jayna Raghwani1, Rhys Pryce, Thomas A. Bowden, Julien Thézé, Shanqian Huang, Yingchao Song, Lirong Zou, Lijun Liang, Ru Bai, Yi Jing, Pingping Zhou, Min Kang, Lina Yi, Jie Wu2, Oliver G. Pybus2, and Changwen Ke1Comments to Author 
Author affiliations: Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China (J. Lu, Y. Song, L. Zou, L. Liang, R. Bai, Y. Jing, P. Zhou, M. Kang, L. Yi, J. Wu, C. Ke); Guangdong Provincial Institution of Public Health, Guangzhou (J. Lu, P. Zhou, L. Yi); University of Oxford, Oxford, UK (J. Raghwani, R. Pryce, T.A. Bowden, J. Thézé, O.G. Pybus); Beijing Normal University, Beijing, China (S. Huang)

Main Article

Figure 2

Genetic evolution and spatial spread of epidemic lineage of influenza A(H7N9) viruses, China, 2013–2017. Bayesian maximum clade credibility tree of the hemagglutinin gene is shown. Black bars to the right of the tree indicate sequences (from waves 4 and 5) from other studies (1,5), and red bars indicate sequences reported in this study from Guangdong Province. Branch colors indicate most probable ancestral locations of each branch. Three major lineages (A, B, and C) of H7N9 viruses were observed

Figure 2. Genetic evolution and spatial spread of epidemic lineage of influenza A(H7N9) viruses, China, 2013–2017. Bayesian maximum clade credibility tree of the hemagglutinin gene is shown. Black bars to the right of the tree indicate sequences (from waves 4 and 5) from other studies (1,5), and red bars indicate sequences reported in this study from Guangdong Province. Branch colors indicate most probable ancestral locations of each branch. Three major lineages (A, B, and C) of H7N9 viruses were observed. Values along branches indicate bootstrap values. Black circles indicate posterior support >0.95. Location posterior support is shown for selected clades. An H7N9 strain closely related to the highly pathogenic H7N9 virus cluster is indicated. HP, highly pathogenic.

Main Article

References
  1. Xiang  N, Li  X, Ren  R, Wang  D, Zhou  S, Greene  CM, et al. Assessing change in avian influenza A(H7N9) virus infections during the fourth epidemic—China, September 2015–August 2016. MMWR Morb Mortal Wkly Rep. 2016;65:13904. DOIPubMedGoogle Scholar
  2. Cui  L, Liu  D, Shi  W, Pan  J, Qi  X, Li  X, et al. Dynamic reassortments and genetic heterogeneity of the human-infecting influenza A (H7N9) virus. Nat Commun. 2014;5:3142. DOIPubMedGoogle Scholar
  3. Lam  TT, Zhou  B, Wang  J, Chai  Y, Shen  Y, Chen  X, et al. Dissemination, divergence and establishment of H7N9 influenza viruses in China. Nature. 2015;522:1025. DOIPubMedGoogle Scholar
  4. Wu  J, Lu  J, Faria  NR, Zeng  X, Song  Y, Zou  L, et al. Effect of live poultry market interventions on influenza A(H7N9) virus, Guangdong, China. Emerg Infect Dis. 2016;22:210412. DOIPubMedGoogle Scholar
  5. Iuliano  AD, Jang  Y, Jones  J, Davis  CT, Wentworth  DE, Uyeki  TM, et al. Increase in human infections with avian influenza A(H7N9) virus during the fifth epidemic—China, October 2016–February 2017. MMWR Morb Mortal Wkly Rep. 2017;66:2545. DOIPubMedGoogle Scholar
  6. Wang  X, Jiang  H, Wu  P, Uyeki  TM, Feng  L, Lai  S, et al. Epidemiology of avian influenza A H7N9 virus in human beings across five epidemics in mainland China, 2013-17: an epidemiological study of laboratory-confirmed case series. Lancet Infect Dis. 2017;17:82232. DOIPubMedGoogle Scholar
  7. Artois  J, Jiang  H, Wang  X, Qin  Y, Pearcy  M, Lai  S, et al. Changing geographic patterns and risk factors for avian influenza A(H7N9) infections in humans, China. Emerg Infect Dis. 2018;24:8794. DOIPubMedGoogle Scholar
  8. Wang  D, Yang  L, Zhu  W, Zhang  Y, Zou  S, Bo  H, et al. Two outbreak sources of influenza A (H7N9) viruses have been established in China. J Virol. 2016;90:556173. DOIPubMedGoogle Scholar
  9. Zhu  W, Zhou  J, Li  Z, Yang  L, Li  X, Huang  W, et al. Biological characterisation of the emerged highly pathogenic avian influenza (HPAI) A(H7N9) viruses in humans, in mainland China, 2016 to 2017. Euro Surveill. 2017;22:30533. DOIPubMedGoogle Scholar
  10. Ke  C, Mok  CKP, Zhu  W, Zhou  H, He  J, Guan  W, et al. Human infection with highly pathogenic avian influenza A(H7N9) virus, China. Emerg Infect Dis. 2017;23:133240. DOIPubMedGoogle Scholar
  11. Zhang  F, Bi  Y, Wang  J, Wong  G, Shi  W, Hu  F, et al. Human infections with recently-emerging highly pathogenic H7N9 avian influenza virus in China. J Infect. 2017;75:715. DOIPubMedGoogle Scholar
  12. Ke  C, Lu  J, Wu  J, Guan  D, Zou  L, Song  T, et al. Circulation of reassortant influenza A(H7N9) viruses in poultry and humans, Guangdong Province, China, 2013. Emerg Infect Dis. 2014;20:203440. DOIPubMedGoogle Scholar
  13. Lu  J, Wu  J, Zeng  X, Guan  D, Zou  L, Yi  L, et al. Continuing reassortment leads to the genetic diversity of influenza virus H7N9 in Guangdong, China. J Virol. 2014;88:8297306. DOIPubMedGoogle Scholar
  14. Larkin  MA, Blackshields  G, Brown  NP, Chenna  R, McGettigan  PA, McWilliam  H, et al. Clustal W and Clustal X version 2.0. Bioinformatics. 2007;23:29478. DOIPubMedGoogle Scholar
  15. Larsson  A. AliView: a fast and lightweight alignment viewer and editor for large datasets. Bioinformatics. 2014;30:32768. DOIPubMedGoogle Scholar
  16. Drummond  AJ, Suchard  MA, Xie  D, Rambaut  A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol. 2012;29:196973. DOIPubMedGoogle Scholar
  17. Lemey  P, Rambaut  A, Bedford  T, Faria  N, Bielejec  F, Baele  G, et al. Unifying viral genetics and human transportation data to predict the global transmission dynamics of human influenza H3N2. PLoS Pathog. 2014;10:e1003932. DOIPubMedGoogle Scholar
  18. Lemey  P, Rambaut  A, Drummond  AJ, Suchard  MA. Bayesian phylogeography finds its roots. PLOS Comput Biol. 2009;5:e1000520. DOIPubMedGoogle Scholar
  19. Edwards  CJ, Suchard  MA, Lemey  P, Welch  JJ, Barnes  I, Fulton  TL, et al. Ancient hybridization and an Irish origin for the modern polar bear matriline. Curr Biol. 2011;21:12518. DOIPubMedGoogle Scholar
  20. Jones  DT, Taylor  WR, Thornton  JM. The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci. 1992;8:27582.PubMedGoogle Scholar
  21. Yang  Z. Among-site rate variation and its impact on phylogenetic analyses. Trends Ecol Evol. 1996;11:36772. DOIPubMedGoogle Scholar
  22. Xiong  X, Martin  SR, Haire  LF, Wharton  SA, Daniels  RS, Bennett  MS, et al. Receptor binding by an H7N9 influenza virus from humans. Nature. 2013;499:4969. DOIPubMedGoogle Scholar
  23. Schrödinger  L. The PyMOL molecular graphics system. Version 1.8. New York: Schrödinger, LLC; 2015.
  24. Gouet  P, Courcelle  E, Stuart  DI, Métoz  F. ESPript: analysis of multiple sequence alignments in PostScript. Bioinformatics. 1999;15:3058. DOIPubMedGoogle Scholar
  25. Winn  MD, Ballard  CC, Cowtan  KD, Dodson  EJ, Emsley  P, Evans  PR, et al. Overview of the CCP4 suite and current developments. Acta Crystallogr D Biol Crystallogr. 2011;67:23542. DOIPubMedGoogle Scholar
  26. Pond  SL, Frost  SD, Muse  SV. HyPhy: hypothesis testing using phylogenies. Bioinformatics. 2005;21:6769. DOIPubMedGoogle Scholar
  27. Kosakovsky Pond  SL, Frost  SD. Not so different after all: a comparison of methods for detecting amino acid sites under selection. Mol Biol Evol. 2005;22:120822. DOIPubMedGoogle Scholar
  28. Murrell  B, Wertheim  JO, Moola  S, Weighill  T, Scheffler  K, Kosakovsky Pond  SL. Detecting individual sites subject to episodic diversifying selection. PLoS Genet. 2012;8:e1002764. DOIPubMedGoogle Scholar
  29. Murrell  B, Moola  S, Mabona  A, Weighill  T, Sheward  D, Kosakovsky Pond  SL, et al. FUBAR: a fast, unconstrained bayesian approximation for inferring selection. Mol Biol Evol. 2013;30:1196205. DOIPubMedGoogle Scholar
  30. Bhatt  S, Holmes  EC, Pybus  OG. The genomic rate of molecular adaptation of the human influenza A virus. Mol Biol Evol. 2011;28:244351. DOIPubMedGoogle Scholar
  31. Raghwani  J, Bhatt  S, Pybus  OG. Faster adaptation in smaller populations: counterintuitive evolution of HIV during childhood infection. PLOS Comput Biol. 2016;12:e1004694. DOIPubMedGoogle Scholar
  32. Kapczynski  DR, Pantin-Jackwood  M, Guzman  SG, Ricardez  Y, Spackman  E, Bertran  K, et al. Characterization of the 2012 highly pathogenic avian influenza H7N3 virus isolated from poultry in an outbreak in Mexico: pathobiology and vaccine protection. J Virol. 2013;87:908696. DOIPubMedGoogle Scholar
  33. Subbarao  K, Klimov  A, Katz  J, Regnery  H, Lim  W, Hall  H, et al. Characterization of an avian influenza A (H5N1) virus isolated from a child with a fatal respiratory illness. Science. 1998;279:3936. DOIPubMedGoogle Scholar
  34. Wiley  DC, Wilson  IA, Skehel  JJ. Structural identification of the antibody-binding sites of Hong Kong influenza haemagglutinin and their involvement in antigenic variation. Nature. 1981;289:3738. DOIPubMedGoogle Scholar
  35. Monne  I, Fusaro  A, Nelson  MI, Bonfanti  L, Mulatti  P, Hughes  J, et al. Emergence of a highly pathogenic avian influenza virus from a low-pathogenic progenitor. J Virol. 2014;88:437588. DOIPubMedGoogle Scholar
  36. de Wit  E, Munster  VJ, van Riel  D, Beyer  WE, Rimmelzwaan  GF, Kuiken  T, et al. Molecular determinants of adaptation of highly pathogenic avian influenza H7N7 viruses to efficient replication in the human host. J Virol. 2010;84:1597606. DOIPubMedGoogle Scholar
  37. Schmeisser  F, Vasudevan  A, Verma  S, Wang  W, Alvarado  E, Weiss  C, et al. Antibodies to antigenic site A of influenza H7 hemagglutinin provide protection against H7N9 challenge. PLoS One. 2015;10:e0117108. DOIPubMedGoogle Scholar
  38. Belser  JA, Gustin  KM, Pearce  MB, Maines  TR, Zeng  H, Pappas  C, et al. Pathogenesis and transmission of avian influenza A (H7N9) virus in ferrets and mice. Nature. 2013;501:5569. DOIPubMedGoogle Scholar
  39. Cattoli  G, Milani  A, Temperton  N, Zecchin  B, Buratin  A, Molesti  E, et al. Antigenic drift in H5N1 avian influenza virus in poultry is driven by mutations in major antigenic sites of the hemagglutinin molecule analogous to those for human influenza virus. J Virol. 2011;85:871824. DOIPubMedGoogle Scholar
  40. Xu  L, Bao  L, Deng  W, Dong  L, Zhu  H, Chen  T, et al. Novel avian-origin human influenza A(H7N9) can be transmitted between ferrets via respiratory droplets. J Infect Dis. 2014;209:5516. DOIPubMedGoogle Scholar
  41. Yang  L, Zhu  W, Li  X, Chen  M, Wu  J, Yu  P, et al. Genesis and spread of newly emerged highly pathogenic H7N9 avian viruses in mainland China. J Virol. 2017;91:e0127717.PubMedGoogle Scholar
  42. García  M, Crawford  JM, Latimer  JW, Rivera-Cruz  E, Perdue  ML. Heterogeneity in the haemagglutinin gene and emergence of the highly pathogenic phenotype among recent H5N2 avian influenza viruses from Mexico. J Gen Virol. 1996;77:1493504. DOIPubMedGoogle Scholar
  43. Horimoto  T, Rivera  E, Pearson  J, Senne  D, Krauss  S, Kawaoka  Y, et al. Origin and molecular changes associated with emergence of a highly pathogenic H5N2 influenza virus in Mexico. Virology. 1995;213:22330. DOIPubMedGoogle Scholar
  44. Suarez  DL, Senne  DA, Banks  J, Brown  IH, Essen  SC, Lee  CW, et al. Recombination resulting in virulence shift in avian influenza outbreak, Chile. Emerg Infect Dis. 2004;10:6939. DOIPubMedGoogle Scholar
  45. Kapczynski  DR, Pantin-Jackwood  M, Guzman  SG, Ricardez  Y, Spackman  E, Bertran  K, et al. Characterization of the 2012 highly pathogenic avian influenza H7N3 virus isolated from poultry in an outbreak in Mexico: pathobiology and vaccine protection. J Virol. 2013;87:908696. DOIPubMedGoogle Scholar
  46. Pasick  J, Handel  K, Robinson  J, Copps  J, Ridd  D, Hills  K, et al. Intersegmental recombination between the haemagglutinin and matrix genes was responsible for the emergence of a highly pathogenic H7N3 avian influenza virus in British Columbia. J Gen Virol. 2005;86:72731. DOIPubMedGoogle Scholar
  47. Shi  J, Deng  G, Kong  H, Gu  C, Ma  S, Yin  X, et al. H7N9 virulent mutants detected in chickens in China pose an increased threat to humans. Cell Res. 2017;27:140921. DOIPubMedGoogle Scholar
  48. Imai  M, Watanabe  T, Kiso  M, Nakajima  N, Yamayoshi  S, Iwatsuki-Horimoto  K, et al. A highly pathogenic avian H7N9 influenza virus isolated from a human is lethal in some ferrets infected via respiratory droplets. Cell Host Microbe. 2017;22:615626.e8. DOIPubMedGoogle Scholar

Main Article

1These authors contributed equally to this article.

2These senior authors jointly supervised this study.

Page created: September 14, 2018
Page updated: September 14, 2018
Page reviewed: September 14, 2018
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external