Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 25, Number 11—November 2019

Non-Leishmania Parasite in Fatal Visceral Leishmaniasis–Like Disease, Brazil

Sandra R. Maruyama1Comments to Author , Alynne K.M. de Santana12, Nayore T. Takamiya, Talita Y. Takahashi, Luana A. Rogerio, Caio A.B. Oliveira, Cristiane M. Milanezi, Viviane A. Trombela, Angela K. Cruz, Amélia R. Jesus, Aline S. Barreto, Angela M. da Silva, Roque P. Almeida3, José M. Ribeiro3, and João S. Silva3
Author affiliations: Universidade Federal de São Carlos, São Carlos, Brazil (S.R. Maruyama, N.T. Takamiya, T.Y. Takahashi, L.A. Rogerio, C.A.B. Oliveira); Universidade Federal de Sergipe, Aracaju, Brazil (A.K.M. de Santana, A.R. Jesus, A.S. Barreto, A.M. da Silva, R.P. Almeida); Universidade de São Paulo, Ribeirão Preto, Brazil (C.M. Milanezi, V.A. Trombela, A.K. Cruz); National Institutes of Health, Rockville, Maryland, USA (J.M. Ribeiro); Fundação Oswaldo Cruz Bi-institucional, Ribeirão Preto (J.S. Silva)

Main Article


Non-Leishmania parasites isolated from 2 patients with visceral leishmaniasis–like illness used for whole-genome sequencing, Brazil*

isolate Year isolated Tissue source Patient age, y/sex Treatment Recidivism Healing time Serologic test (rK39) MLEE Experimental
LVH60 2011 BM 64/M Liposomal amphotericin B Yes, 3 Fatal case Positive Inconclusive Mouse infection (this study)
LVH60a (DPSLs) 2012 SL 65/M Liposomal amphotericin B Yes, 3 Fatal case Positive Inconclusive Mouse infection (this study)
HU-UFS14 2009 BM 15/M Antimony, amphotericin B NA NA Positive L. infantum NO- and antimony-resistant (8); murine model of infection (912).

*BM, bone marrow; DPSL, disseminated popular skin lesions; MLEE, multilocus enzyme electrophoresis; NA, not available or not applicable; NO, nitrite oxide; SL, skin lesion.

Main Article

  1. World Health Organization. Leishmaniasis [cited 2019 Mar 26].
  2. Centers for Disease Control and Prevention. Parasites—leishmaniasis [cited 2019 Apr 23].
  3. El Hajj  R, El Hajj  H, Khalifeh  I. Fatal visceral leishmaniasis caused by Leishmania infantum, Lebanon. Emerg Infect Dis. 2018;24:9067. DOIPubMedGoogle Scholar
  4. Alvar  J, Vélez  ID, Bern  C, Herrero  M, Desjeux  P, Cano  J, et al.; WHO Leishmaniasis Control Team. Leishmaniasis worldwide and global estimates of its incidence. PLoS One. 2012;7:e35671. DOIPubMedGoogle Scholar
  5. Kaufer  A, Ellis  J, Stark  D, Barratt  J. The evolution of trypanosomatid taxonomy. Parasit Vectors. 2017;10:287. DOIPubMedGoogle Scholar
  6. Ghobakhloo  N, Motazedian  MH, Naderi  S, Ebrahimi  S. Isolation of Crithidia spp. from lesions of immunocompetent patients with suspected cutaneous leishmaniasis in Iran. Trop Med Int Health. 2019;24:11626.PubMedGoogle Scholar
  7. Ghosh  S, Banerjee  P, Sarkar  A, Datta  S, Chatterjee  M. Coinfection of Leptomonas seymouri and Leishmania donovani in Indian leishmaniasis. J Clin Microbiol. 2012;50:27748. DOIPubMedGoogle Scholar
  8. de Azevedo  AF, Dutra  JL, Santos  ML, Santos  DA, Alves  PB, de Moura  TR, et al. Fatty acid profiles in Leishmania spp. isolates with natural resistance to nitric oxide and trivalent antimony. Parasitol Res. 2014;113:1927. DOIPubMedGoogle Scholar
  9. Nascimento  MSL, Ferreira  MD, Quirino  GFS, Maruyama  SR, Krishnaswamy  JK, Liu  D, et al. NOD2-RIP2–mediated signaling helps shape adaptive immunity in visceral leishmaniasis. J Infect Dis. 2016;214:164757. DOIPubMedGoogle Scholar
  10. Lima  MHF, Sacramento  LA, Quirino  GFS, Ferreira  MD, Benevides  L, Santana  AKM, et al. Leishmania infantum parasites subvert the host inflammatory response through the adenosine A2A receptor to promote the establishment of infection. Front Immunol. 2017;8:815. DOIPubMedGoogle Scholar
  11. Nascimento  MS, Carregaro  V, Lima-Júnior  DS, Costa  DL, Ryffel  B, Duthie  MS, et al. Interleukin 17A acts synergistically with interferon γ to promote protection against Leishmania infantum infection. J Infect Dis. 2015;211:101526. DOIPubMedGoogle Scholar
  12. Sacramento  LA, da Costa  JL, de Lima  MH, Sampaio  PA, Almeida  RP, Cunha  FQ, et al. Toll-like receptor 2 is required for inflammatory process development during Leishmania infantum infection. Front Microbiol. 2017;8:262. DOIPubMedGoogle Scholar
  13. Carnaúba  D Jr, Konishi  CT, Petri  V, Martinez  ICP, Shimizu  L, Pereira-Chioccola  VL. Atypical disseminated leishmaniasis similar to post-kala-azar dermal leishmaniasis in a Brazilian AIDS patient infected with Leishmania (Leishmania) infantum chagasi: a case report. Int J Infect Dis. 2009;13:e5047. DOIPubMedGoogle Scholar
  14. Espada  CR, Ortiz  PA, Shaw  JJ, Barral  AMP, Costa  JML, Uliana  SRB, et al. Identification of Leishmania (Viannia) species and clinical isolates of Leishmania (Leishmania) amazonensis from Brazil using PCR-RFLP of the heat-shock protein 70 gene reveals some unexpected observations. Diagn Microbiol Infect Dis. 2018;91:3128. DOIPubMedGoogle Scholar
  15. Machado  TDO, Minuzzi-Souza  TTC, Ferreira  TS, Freire  LP, Timbó  RV, Vital  TE, et al. The role of gallery forests in maintaining Phlebotominae populations: potential Leishmania spp. vectors in the Brazilian savanna. Mem Inst Oswaldo Cruz. 2017;112:68191. DOIPubMedGoogle Scholar

Main Article

1These authors contributed equally to this article.

2Current affiliation: Universidade de São Paulo, Ribeirão Preto, Brazil.

3These senior authors contributed equally to this article.

Page created: October 15, 2019
Page updated: October 15, 2019
Page reviewed: October 15, 2019
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.