Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 25, Number 11—November 2019
Research Letter

Host Switching of Zoonotic Broad Fish Tapeworm (Dibothriocephalus latus) to Salmonids, Patagonia

Author affiliations: Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic (R. Kuchta, T. Scholz); Institute of Parasitology, Slovak Academy of Sciences, Košice, Slovak Republic (A. Radačovská, E. Bazsalovicsová); U; niversidad Nacional del Comahue, San Carlos de Bariloche, Argentina (G. Viozzi, L. Semenas, M. Arbetman)

Cite This Article

Abstract

Diphyllobothriosis is a reemerging zoonotic disease because of global trade and increased popularity of eating raw fish. We present molecular evidence of host switching of a human-infecting broad fish tapeworm, Dibothriocephalus latus, and use of salmonids as intermediate or paratenic hosts and thus a source of human infection in South America.

Diphyllobothriosis is an emerging zoonotic disease caused by broad fish tapeworms. Except for the Pacific broad tapeworm (Adenocephalus pacificus), whose life cycle is completed in the sea, all species of the genus Dibothriocephalus (formerly in Diphyllobothrium) were limited to the freshwaters in the Northern Hemisphere (1). However, some of these tapeworms also were reported in the Southern Hemisphere, including South America, especially Patagonia, in the 20th century. Although the introduction routes of these human parasites remain unknown, their larvae (plerocercoids) have appeared in South America in nonnative but economically important salmonids, such as rainbow, brown, and brook trout (2,3).

Several cases of diphyllobothriosis have been reported from South America, and plerocercoids of tapeworms identified as Dibothriocephalus latus and D. dendriticus have been reported in fish (Appendix Table 1). However, species identification was based almost exclusively on morphologic characteristics. Considering general uniformity, intraspecific variability, and shortage of species-specific morphologic traits (especially in plerocercoids), all previous reports of D. latus and D. dendriticus tapeworms from South America need verification (4). Reports concerning the most commercially important species of salmonids being infected with D. latus tapeworms are especially dubious because this species most likely uses only freshwater percid, esocid, and gadid fish as its second intermediate hosts in the Northern Hemisphere (1,4).

Reliable identification of plerocercoids, which are the source of diphyllobothriosis, is crucial from the epidemiologic point of view because salmonids are of great economic value in South America as a food source for local populations, sport fishing, and exportation (5). We provide molecular evidence of second intermediate or paratenic host switching of human-infecting D. latus tapeworms in Patagonia, South America.

Figure

Thumbnail of Microphotographs of Dibothriocephalus spp. plerocercoids from 3 salmonid species in Lago Gutiérrez, Patagonia, Argentina. A) D. dendriticus and D. latus plerocercoids from Oncorhynchus mykiss rainbow trout. B) D. latus plerocercoids from Salvelinus fontinalis brook trout. C) D. dendriticus plerocercoids from Salmo trutta brown trout. D) D. latus plerocercoids from S. trutta brown trout. E, F) D. dendriticus plerocercoids from O. mykiss rainbow trout. G) D. latus plerocercoids from S

Figure. Microphotographs of Dibothriocephalus spp. plerocercoids from 3 salmonid species in Lago Gutiérrez, Patagonia, Argentina. A) D. dendriticus and D. latus plerocercoids from Oncorhynchus mykiss rainbow trout. B) D. latus plerocercoids from...

We found a total of 44 plerocercoids in 3 salmonid species: from Lake Gutiérrez, Rio Negro, Argentina (October 2017), rainbow trout (Oncorhynchus mykiss), of which 2/7 fish examined were infected; brown trout (Salmo trutta), of which 3/4 were infected; and brook trout (Salvelinus fontinalis), of which 5/10 were infected; and from Lake Alicura, Neuquén, Argentina (April 2018), brown trout, of which 3/4 were infected. Most plerocercoids were encysted in the body cavity, mainly among the pyloric ceca, and only a few were free in the muscle. We selected, photographed, and sequenced the partial cox1 gene of 22 larvae in accordance with the procedure described by Wicht et al. (6). We also photodocumented morphologic vouchers (hologenophores) of sequenced specimens (Figure).

Our morphologic and molecular evaluation revealed the presence of D. dendriticus plerocercoids in 12 fish (8 in O. mykiss rainbow trout, 2 in S. trutta brown trout, and 2 in S. fontinalis brook trout); their sequences were identical with those of D. dendriticus tapeworms from Chile (GenBank accession nos. AB623150 and AB623149). We also detected the presence of D. latus plerocercoids in 10 fish (1 in O. mykiss rainbow trout, 3 in S. trutta brown trout, and 6 in S. fontinalis brook trout); these sequences were identical with those of D. latus tapeworms from Italy (GenBank accession no GU997614) (Appendix Table 2).

D. dendriticus plerocercoids have been reported in >50 species of freshwater fish of 12 families, and salmonids represent the principal, most common fish hosts (7). In contrast, D. latus plerocercoids have never been confirmed reliably in salmonids in the Northern Hemisphere, where they occur in relatively few freshwater fish species, such as perch (Perca spp.), pike (Esox spp.), ruffe (Gymnocephalus cernua), burbot (Lota lota), and walleye (Sander spp.) (4), which are not present in South America. Therefore, D. latus tapeworms had to adapt to new second or paratenic intermediate hosts (i.e., salmonids) after their introduction to the Southern Hemisphere, even though salmonids are not suitable hosts in the Northern Hemisphere, where these tapeworms occurred originally (1,4).

The origin of freshwater, human-infecting broad fish tapeworms in South America remains unknown. Salmonids were introduced to Chile (from Germany) and Argentina (from the United States) at the beginning of the 20th century as eggs or juveniles from a hatchery (8,9). However, no evidence indicates that naturally infected salmonids were imported to South America. Introduction of adult tapeworms of Dibothriocephalus spp. through infected humans or dogs cannot be ruled out, nor can the introduction of D. dendriticus tapeworms by migratory birds (1,4).

Our findings provide evidence of host switching of D. latus plerocercoids in Patagonia. Adaptation to new fish hosts might have serious epidemiologic consequences because of the economic importance of salmonids and their consumption by humans locally and abroad. Moreover, these introduced salmonids currently represent a substantial proportion of the total fish population in most of the lakes in the Andes region (5,10). Therefore, parasitologic examination of fish before their exportation on ice is necessary to avoid emergence of new foci of human diphyllobothriosis.

Dr. Kuchta is a researcher at the Institute of Parasitology in the Czech Academy of Sciences. His research interests include parasite biology, phylogeny, and molecular diagnosis of parasitic diseases, mainly diphyllobothriosis and sparganosis.

Top

Acknowledgment

This work was supported by the Czech Science Foundation (grant no. 19-28399x), the Institute of Parasitology, Biology Center of the Czech Academy of Sciences (institutional grant no. 60077344), the Slovak Research and Development Agency (grant no. APVV-15-0004), Slovak Grant Agency VEGA (grant no. 2/0134/17), the National Research Council of Argentina (grant no. PIP 2015–2017), and Universidad Nacional del Comahue (grant no. UNCoB/225).

Top

References

  1. Kuchta  R, Scholz  T. Diphyllobothriidea. In: Caira JN, Jensen K, editors. Planetary biodiversity inventory (2008–2017): tapeworms from vertebrate bowels of the earth. Special publication no. 25. Lawrence (KS, USA): University of Kansas, Natural History Museum; 2017. p. 167–89.
  2. Torres  P, Franjola  R, Pérez  J, Auad  S, Uherek  F, Miranda  JC, et al. Epidemiología de la difilobotriasis en la cuenca del Río Valdivia, Chile. Rev Saude Publica. 1989;23:4557. DOIPubMedGoogle Scholar
  3. Revenga  J, Semenas  L. Difilobotriasis en salmónidos introducidos en el Parque y Reserva Nacional Nahuel Huapi Argentina: morfológia de plerocercoides. Arch Med Vet. 1991;23:15763.
  4. Scholz  T, Kuchta  R. Fish-borne, zoonotic cestodes (Diphyllobothrium and relatives) in cold climates: a never-ending story of neglected and (re)-emergent parasites. Food and Waterborne Parasitology. 2016;4:2338. DOIGoogle Scholar
  5. Soto  D, Arismendi  I, Gonzáles  J, Sanzana  J, Jara  F, Jara  C, et al. Southern Chile, trout and salmon country: invasion patterns and threats for native species. Rev Chil Hist Nat. 2006;79:97117. DOIGoogle Scholar
  6. Wicht  B, Yanagida  T, Scholz  T, Ito  A, Jiménez  JA, Brabec  J. Multiplex PCR for differential identification of broad tapeworms (Cestoda: Diphyllobothrium) infecting humans. J Clin Microbiol. 2010;48:31116. DOIPubMedGoogle Scholar
  7. Kuchta  R, Brabec  J, Kubáčková  P, Scholz  T. Tapeworm Diphyllobothrium dendriticum (Cestoda)—neglected or emerging human parasite? PLoS Negl Trop Dis. 2013;7:e2535. DOIPubMedGoogle Scholar
  8. Golusda  P. Aclimatación y cultivo de especies salmonídeas en Chile. Bol Soc Biol Concepc. 1927;1:80100.
  9. Tulián  E. Acclimatization of American fishes in Argentina. Bull Bureau Fish. 1910;28:320.
  10. Fernández  MV, Lallement  M, Rechencq  M, Vigliano  PH, Sosnovsky  A, Macchi  PJ. Top predator fish assemblages in Northern Patagonia, Argentina. What factors regulate their patterns of distribution and abundance? Austral Ecol. 2018;43:65162. DOIGoogle Scholar

Top

Figure

Top

Cite This Article

DOI: 10.3201/eid2511.190792

Original Publication Date: October 03, 2019

Table of Contents – Volume 25, Number 11—November 2019

EID Search Options
presentation_01 Advanced Article Search – Search articles by author and/or keyword.
presentation_01 Articles by Country Search – Search articles by the topic country.
presentation_01 Article Type Search – Search articles by article type and issue.

Top

Comments

Please use the form below to submit correspondence to the authors or contact them at the following address:

Roman Kuchta, Biology Centre of the Czech Academy of Sciences, Institute of Parasitology, Branišovská 31, České Budějovice 370 05, Czech Republic

Send To

10000 character(s) remaining.

Top

Page created: October 16, 2019
Page updated: October 16, 2019
Page reviewed: October 16, 2019
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external