Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 26, Number 8—August 2020
Dispatch

Plasma-Derived Extracellular Vesicles as Potential Biomarkers in Heart Transplant Patient with Chronic Chagas Disease

Nuria Cortes-Serra, Maria Tays Mendes, Clara Mazagatos1, Joan Segui-Barber, Cameron C. Ellis, Cristina Ballart, Ana Garcia-Alvarez, Montserrat Gállego, Joaquim Gascon, Igor C. Almeida, María Jesús PinazoComments to Author , and Carmen Fernandez-BecerraComments to Author 
Author affiliations: Barcelona Institute for Global Health (ISGlobal), Universitat de Barcelona, Barcelona, Spain (N. Cortes-Serra, C. Mazagatos, J. Segui-Barber, C. Ballart, M. Gállego, J. Gascon, M.J. Pinazo, C. Fernandez-Becerra); Border Biomedical Research Center, The University of Texas at El Paso, El Paso, Texas USA (M.T. Mendes, C.C. Ellis, I.C. Almeida); Secció de Parasitologia, Departament de Biologia, Sanitat i Medi Ambient, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Barcelona, Spain (C. Ballart, M. Gállego); Arrhythmias Unit, Hospital Clinic, University of Barcelona, Barcelona, Spain (A. Garcia-Alvarez); Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain (C. Fernandez-Becerra)

Main Article

Table 1

Timeline of heart transplant patient with chronic Chagas disease from initial diagnosis to last follow-up and death*

Date Infection Observation, treatment, outcome
2015 Aug Cytomegalovirus, detected by serology Diagnosed only by positive IgG serology, no active infection (no positive IgM serology). No treatment.
2015 Aug Toxoplasmosis, detected by serology Diagnosed only by positive IgG serology, no active infection (no positive IgM serology). No treatment.
2015 Nov Heart transplantation on Nov. 28. Patient started with immunosuppressive therapy (tacrolimus, azathioprine, prednisone) until the end of follow-up.
2016 Jan Chagas disease reactivation, detection by qPCR Pretreatment sample collected on Jan 28. Patient started BZN treatment (2.5 mg/kg, twice a day, 60 d) on Feb 3.
2016 Mar Bronchopulmonary aspergillosis, 
detected by serology and CT BZN course interrupted on Mar 21. Completed 80% of the prescribed treatment.
2016 Mar Bronchopulmonary aspergillosis Aspergillosis treatment started on Mar 22. Initially with voriconazole and amphotericin B liposomal. Treatment was changed to posaconazole until the end of the follow-up.†
2016 Apr Chagas disease reactivation, detected by qPCR On Apr 14, patient started second round of BZN treatment until May 5, completing 100% of the prescribed treatment.
2016 May Posttreatment sample collected on May 11.
2016 Aug Late organ rejection. Patient died.

*BZN, benznidazole; CT, computed tomographic scan; qPCR, quantitative PCR.
†Parasite clearance could be related to the prolonged used of posaconazole, as previously reported (6), and/or the combined use of posaconazole and benznidazole because a second round of the latter was started in April 2016.

Main Article

References
  1. Pinazo  MJ, Gascon  J. The importance of the multidisciplinary approach to deal with the new epidemiological scenario of Chagas disease (global health). Acta Trop. 2015;151:1620. DOIPubMed
  2. Pinazo  MJ, Thomas  MC, Bustamante  J, Almeida  IC, Lopez  MC, Gascon  J. Biomarkers of therapeutic responses in chronic Chagas disease: state of the art and future perspectives. Mem Inst Oswaldo Cruz. 2015;110:42232. DOIPubMed
  3. Cheow  ES, Cheng  WC, Lee  CN, de Kleijn  D, Sorokin  V, Sze  SK. Plasma-derived extracellular vesicles contain predictive biomarkers and potential therapeutic targets for myocardial ischemic (MI) injury. Mol Cell Proteomics. 2016;15:262840. DOIPubMed
  4. Marcilla  A, Martin-Jaular  L, Trelis  M, de Menezes-Neto  A, Osuna  A, Bernal  D, et al. Extracellular vesicles in parasitic diseases. J Extracell Vesicles. 2014;3:25040. DOIPubMed
  5. Rassi  A Jr, Rassi  A, Marin-Neto  JA. Chagas disease. Lancet. 2010;375:1388402. DOIPubMed
  6. Pinazo  MJ, Espinosa  G, Gállego  M, López-Chejade  PL, Urbina  JA, Gascón  J. Successful treatment with posaconazole of a patient with chronic Chagas disease and systemic lupus erythematosus. Am J Trop Med Hyg. 2010;82:5837. DOIPubMed
  7. Abras  A, Ballart  C, Llovet  T, Roig  C, Gutiérrez  C, Tebar  S, et al. Introducing automation to the molecular diagnosis of Trypanosoma cruzi infection: A comparative study of sample treatments, DNA extraction methods and real-time PCR assays. PLoS One. 2018;13:e0195738. DOIPubMed
  8. de Menezes-Neto  A, Sáez  MJ, Lozano-Ramos  I, Segui-Barber  J, Martin-Jaular  L, Ullate  JM, et al. Size-exclusion chromatography as a stand-alone methodology identifies novel markers in mass spectrometry analyses of plasma-derived vesicles from healthy individuals. J Extracell Vesicles. 2015;4:27378. DOIPubMed
  9. Yang  F, Shen  Y, Camp  DG II, Smith  RD. High-pH reversed-phase chromatography with fraction concatenation for 2D proteomic analysis. Expert Rev Proteomics. 2012;9:12934. DOIPubMed
  10. Ribeiro  KS, Vasconcellos  CI, Soares  RP, Mendes  MT, Ellis  CC, Aguilera-Flores  M, et al. Proteomic analysis reveals different composition of extracellular vesicles released by two Trypanosoma cruzi strains associated with their distinct interaction with host cells. J Extracell Vesicles. 2018;7:1463779. DOIPubMed
  11. Bayer-Santos  E, Aguilar-Bonavides  C, Rodrigues  SP, Cordero  EM, Marques  AF, Varela-Ramirez  A, et al. Proteomic analysis of Trypanosoma cruzi secretome: characterization of two populations of extracellular vesicles and soluble proteins. J Proteome Res. 2013;12:88397. DOIPubMed
  12. Bautista-López  NL, Ndao  M, Camargo  FV, Nara  T, Annoura  T, Hardie  DB, et al. Characterization and diagnostic application of Trypanosoma cruzi trypomastigote excreted-secreted antigens shed in extracellular vesicles released from infected mammalian cells. J Clin Microbiol. 2017;55:74458. DOIPubMed
  13. Mattos  EC, Canuto  G, Manchola  NC, Magalhães  RDM, Crozier  TWM, Lamont  DJ, et al. Reprogramming of Trypanosoma cruzi metabolism triggered by parasite interaction with the host cell extracellular matrix. PLoS Negl Trop Dis. 2019;13:e0007103. DOIPubMed
  14. Boldt  AB, Luz  PR, Messias-Reason  IJ. MASP2 haplotypes are associated with high risk of cardiomyopathy in chronic Chagas disease. Clin Immunol. 2011;140:6370. DOIPubMed
  15. Rothfuchs  AG, Roffê  E, Gibson  A, Cheever  AW, Ezekowitz  RA, Takahashi  K, et al. Mannose-binding lectin regulates host resistance and pathology during experimental infection with Trypanosoma cruzi. PLoS One. 2012;7:e47835. DOIPubMed

Main Article

1Current affiliation: CIBER Epidemiología y Salud Pública (CIBERESP); Centro Nacional de Epidemiología, Instituto de Salud Carlos III, Madrid, Spain.

Page created: April 27, 2020
Page updated: July 18, 2020
Page reviewed: July 18, 2020
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external