Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 27, Number 12—December 2021
Research

Mammarenaviruses of Rodents, South Africa and Zimbabwe

Antoinette A. Grobbelaar, Jocelyn Jardine1, Felicity J. Burt2, Alasdair J. Shepherd, Susan P. Shepherd, Patricia A. Leman, Alan Kemp, Lawrence E.O. Braack3, Jacqueline WeyerComments to Author , Janusz T. Paweska, and Robert Swanepoel3
Author affiliations: National Institute for Communicable Diseases, Johannesburg, South Africa (A.A. Grobbelaar, J. Jardine, F.J. Burt, A.J. Shepherd, S.P. Shepherd, P.A. Leman, A. Kemp, J. Weyer, J.T. Paweska, R. Swanepoel); South African National Parks Board, Skukuza, South Africa (L.E.O. Braack).

Main Article

Figure 2

Locations where samples were collected from Mastomys spp. rodents, South Africa and Zimbabwe. White squares indicate sites where no antibody to mammarenaviruses was found in M. coucha mouse serum specimens; black squares,where antibody was detected in M. coucha mouse serum specimens; white circles, where no antibody to mammarenaviruses was found in M. natalensis mouse serum specimens; black circles, where antibody was detected in M. natalensis mouse serum specimens; black triangles, where Mopeia virus was isolated from M. natalensis mouse samples during this study; black diamonds, where Mopeia virus was isolated from M. natalensis mouse samples during previous studies, including the original isolations in Mozambique (9,10). Shading indicates distribution ranges for M. coucha and M. natalensis mice. Adapted from Chimimba and Bennett (15).

Figure 2. Locations where samples were collected from Mastomys spp. rodents, South Africa and Zimbabwe. White squares indicate sites where no antibody to mammarenaviruses was found in M. coucha mouse serum specimens; black squares,where antibody was detected in M. coucha mouse serum specimens; white circles, where no antibody to mammarenaviruses was found in M. natalensis mouse serum specimens; black circles, where antibody was detected in M. natalensis mouse serum specimens; black triangles, where Mopeia virus was isolated from M. natalensis mouse samples during this study; black diamonds, where Mopeia virus was isolated from M. natalensis mouse samples during previous studies, including the original isolations in Mozambique (9,10). Shading indicates distribution ranges for M. coucha and M. natalensis mice. Adapted from Chimimba and Bennett (15).

Main Article

References
  1. Swanepoel  R. Viral haemorrhagic fevers in South Africa: history and national strategy. S Afr J Sci. 1987;83:808.
  2. Swanepoel  R, Shepherd  AJ, Leman  PA, Shepherd  SP, McGillivray  GM, Erasmus  MJ, et al. Epidemiologic and clinical features of Crimean-Congo hemorrhagic fever in southern Africa. Am J Trop Med Hyg. 1987;36:12032. DOIPubMedGoogle Scholar
  3. Shepherd  AJ, Swanepoel  R, Shepherd  SP, McGillivray  GM, Searle  LA. Antibody to Crimean-Congo hemorrhagic fever virus in wild mammals from southern Africa. Am J Trop Med Hyg. 1987;36:13342. DOIPubMedGoogle Scholar
  4. Johnson  KM, Elliott  LH, Heymann  DL. Preparation of polyvalent viral immunofluorescent intracellular antigens and use in human serosurveys. J Clin Microbiol. 1981;14:5279. DOIPubMedGoogle Scholar
  5. Ksiazek  TG, West  CP, Rollin  PE, Jahrling  PB, Peters  CJ. ELISA for the detection of antibodies to Ebola viruses. J Infect Dis. 1999;179(Suppl 1):S1928. DOIPubMedGoogle Scholar
  6. Blackburn  NK, Besselaar  TG, Shepherd  AJ, Swanepoel  R. Preparation and use of monoclonal antibodies for identifying Crimean-Congo hemorrhagic fever virus. Am J Trop Med Hyg. 1987;37:3927. DOIPubMedGoogle Scholar
  7. Swanepoel  R, Blackburn  NK, Efstratiou  S, Condy  JB. Studies on Rift Valley fever in some African murids (Rodentia: Muridae). J Hyg (Lond). 1978;80:18396. DOIPubMedGoogle Scholar
  8. Galan  M, Pagès  M, Cosson  J-F. Next-generation sequencing for rodent barcoding: species identification from fresh, degraded and environmental samples. PLoS One. 2012;7:e48374. DOIPubMedGoogle Scholar
  9. Wulff  H, McIntosh  BM, Hamner  DB, Johnson  KM. Isolation of an arenavirus closely related to Lassa virus from Mastomys natalensis in south-east Africa. Bull World Health Organ. 1977;55:4414.PubMedGoogle Scholar
  10. Johnson  KM, Taylor  P, Elliott  LH, Tomori  O. Recovery of a Lassa-related arenavirus in Zimbabwe. Am J Trop Med Hyg. 1981;30:12913. DOIPubMedGoogle Scholar
  11. Lecompte  E, ter Meulen  J, Emonet  S, Daffis  S, Charrel  RN. Genetic identification of Kodoko virus, a novel arenavirus of the African pigmy mouse (Mus Nannomys minutoides) in West Africa. Virology. 2007;364:17883. DOIPubMedGoogle Scholar
  12. de Bellocq  JG, Borremans  B, Katakweba  A, Makundi  R, Baird  SJ, Becker-Ziaja  B, et al. Sympatric occurrence of 3 arenaviruses, Tanzania. Emerg Infect Dis. 2010;16:6925. DOIPubMedGoogle Scholar
  13. Bowen  MD, Peters  CJ, Nichol  ST. The phylogeny of New World (Tacaribe complex) arenaviruses. Virology. 1996;219:28590. DOIPubMedGoogle Scholar
  14. Kumar  S, Stecher  G, Tamura  K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33:18704. DOIPubMedGoogle Scholar
  15. Chimimba  CT, Bennett  NC. 2005. Order Rodentia. In: Skinner JD and Chimimba CT, editors. The mammals of the southern African subregion, 3rd edition. Cape Town: Cambridge University Press; 2005. p. 77–209.
  16. Russo  IR, Chimimba  CT, Bloomer  P. Bioregion heterogeneity correlates with extensive mitochondrial DNA diversity in the Namaqua rock mouse, Micaelamys namaquensis (Rodentia: Muridae) from southern Africa—evidence for a species complex. BMC Evol Biol. 2010;10:307. DOIPubMedGoogle Scholar
  17. Do Linh San  E, Babu  N, Xalu  M, Le Gars  S, Perquin  J-C, Baxter  RM, et al. A conservation assessment of Otomys unisulcatus. In: Child MF, Roxburgh L, Do Linh San E, Raimondo D, Davies-Mostert HT, editors. The red list of mammals of South Africa, Swaziland and Lesotho 2016. Pretoria, South Africa: South African National Biodiversity Institute and Endangered Wildlife Trust; 2017.
  18. Monadjem  A, Taylor  PJ, Denys  C, Cotterill  FPD. Rodents of sub-Saharan Africa: a biogeographic and taxonomic synthesis. Berlin: Walter de Gruyter GmbH; 2015.
  19. Castiglia  R, Solano  E, Makundi  RH, Hulselmans  J, Verheyen  E, Colangelo  P. Rapid chromosomal evolution in the mesic four-striped grass rat Rhabdomys dilectus (Rodentia, Muridae) revealed by mtDNA phylogeographic analysis. J Zool Syst Evol Res. 2011;50:16572. DOIGoogle Scholar
  20. du Toit  N, van Vuuren  BJ, Matthee  S, Matthee  CA. Biome specificity of distinct genetic lineages within the four-striped mouse Rhabdomys pumilio (Rodentia: Muridae) from southern Africa with implications for taxonomy. Mol Phylogenet Evol. 2012;65:7586. DOIPubMedGoogle Scholar
  21. Ganem  G, Dufour  C, Avenant  N, Caminade  P, Eiseb  S, Tougard  C, et al. An update on the distribution and diversification of Rhabdomys sp. (Muridae, Rodentia). J Vert Biol. 2020;69:1. DOIGoogle Scholar
  22. McIntosh  BM, Dickinson  DB, Meenehan  GM, Dos Santos  IS. Culex (Eumelanomyia) rubinotus Theobald as vector of Banzi, Germiston and Witwatersrand viruses. II. Infections in sentinel hamsters and wild rodents. J Med Entomol. 1976;12:6414. DOIPubMedGoogle Scholar
  23. Monath  TP, Newhouse  VF, Kemp  GE, Setzer  HW, Cacciapuoti  A. Lassa virus isolation from Mastomys natalensis rodents during an epidemic in Sierra Leone. Science. 1974;185:2635. DOIPubMedGoogle Scholar
  24. Walker  DH, Johnson  KM, Lange  JV, Gardner  JJ, Kiley  MP, McCormick  JB. Experimental infection of rhesus monkeys with Lassa virus and a closely related arenavirus, Mozambique virus. J Infect Dis. 1982;146:3608. DOIPubMedGoogle Scholar
  25. Paweska  JT, Sewlall  NH, Ksiazek  TG, Blumberg  LH, Hale  MJ, Lipkin  WI, et al.; Outbreak Control and Investigation Teams. Nosocomial outbreak of novel arenavirus infection, southern Africa. Emerg Infect Dis. 2009;15:1598602. DOIPubMedGoogle Scholar
  26. Palacios  G, Savji  N, Hui  J, Travassos da Rosa  A, Popov  V, Briese  T, et al. Genomic and phylogenetic characterization of Merino Walk virus, a novel arenavirus isolated in South Africa. J Gen Virol. 2010;91:131524. DOIPubMedGoogle Scholar
  27. Colangelo  P, Verheyen  E, Leirs  H, Tatard  C, Denys  C, Dobigny  G, et al. A mitochondrial phylogeographic scenario for the most widespread African rodent, Mastomys natalensis. Biol J Linn Soc Lond. 2013;108:90116. DOIGoogle Scholar
  28. Göuy de Bellocq  J, Bryjová  A, Martynov  A, Lavrenchenko  L. Dhati Welel virus, the missing mammarenavirus of the widespread Mastomys natalensis. J Vert Biol. 2020;69:20018. DOIGoogle Scholar
  29. Gryseels  S, Baird  SJE, Borremans  B, Makundi  R, Leirs  H, Goüy de Bellocq  J. When viruses don’t go viral: the importance of host phylogeographic structure in the spatial spread of arenaviruses. PLoS Pathog. 2017;13:e1006073. DOIPubMedGoogle Scholar
  30. Radoshitzky  SR, Buchmeier  MJ, Charrel  RN, Clegg  JCS, Gonzalez  JJ, Günther  S, et al.; Ictv Report Consortium. ICTV virus taxonomy profile: Arenaviridae. J Gen Virol. 2019;100:12001. DOIPubMedGoogle Scholar
  31. Witkowski  PT, Kallies  R, Hoveka  J, Auste  B, Ithete  NL, Šoltys  K, et al. Novel arenavirus isolates from Namaqua rock mice, Namibia, Southern Africa. Emerg Infect Dis. 2015;21:12136. DOIPubMedGoogle Scholar
  32. Těšíková  J, Krásová  J, Goüy de Bellocq  J. Multiple mammarenaviruses circulating in Angolan rodents. Viruses. 2021;13:982. DOIPubMedGoogle Scholar
  33. Edwards  S, Claude  J, Van Vuuren  BJ, Matthee  CA. Van Vuuren Bj, Matthee Ca. Evolutionary history of the Karoo bush rat, Myotomys unisulcatus (Rodentia: Muridae): disconcordance between morphology and genetics. Biol J Linn Soc Lond. 2011;102:51026. DOIGoogle Scholar
  34. Ishii  A, Thomas  Y, Moonga  L, Nakamura  I, Ohnuma  A, Hang’ombe  BM, et al. Molecular surveillance and phylogenetic analysis of Old World arenaviruses in Zambia. J Gen Virol. 2012;93:224751. DOIPubMedGoogle Scholar

Main Article

1Current affiliation: EduVos, Midrand, South Africa.

2Current affiliation: University of the Free State, Bloemfontein, South Africa.

3Current affiliation: University of Pretoria, Pretoria, South Africa.

Page created: October 11, 2021
Page updated: November 19, 2021
Page reviewed: November 19, 2021
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external