Volume 28, Number 12—December 2022
Research
Emergence and Evolutionary Response of Vibrio cholerae to Novel Bacteriophage, Democratic Republic of the Congo1
Table
Strain | Isolation date | Province/location | Serotype |
Susceptibility of V. cholerae to ICP1_2017_A_DRC† | Mutation in O1 antigen and other genes‡ | SRA ID | |
---|---|---|---|---|---|---|---|
Ogawa | Inaba | ||||||
AGC-1 | 2015 Apr 30 | North Kivu/Kirotshe | – | + | S | – | SRR15192533 |
AGC-2 | 2015 May 18 | Goma/Buhimba | – | + | S | – | SRR15192532 |
AGC-3 | 2015 May 20 | Mutwanga | – | + | R | rfbD | SRR15192521 |
AGC-4 | 2015 Mar 07 | Goma/Buhimba | – | + | R | rfbN | SRR15192516 |
AGC-5 | 2015 Mar 20 | Goma/Buhimba | – | + | S | – | SRR15192515 |
AGC-6 | 2015 Jul 26 | Goma/Buhimba | – | + | R | rfbV, VC0559 (hypothetical), rplE, phrA, fliD, VC0672 (hypothetical) | SRR15192514 |
AGC-7 | 2015 Jun 06 | Goma/Buhimba | – | + | S | – | SRR15192513 |
AGC-8 | 2015 Aug 06 | Goma/Buhimba | – | + | S | – | SRR15192512 |
AGC-9 | 2016 Jun 20 | Maniema/Kabambare | + | – | S | – | SRR15192511 |
AGC-10 | 2016 Aug 09 | Karisimbi/Hop Millitaire | – | + | R | rfbD | SRR15192510 |
AGC-11 | 2016 May 28 | Alimbongo | – | + | R | rfbD | SRR15192531 |
AGC-12 | 2016 Jul 27 | South Kivu/Fizi | + | – | S | – | SRR15192530 |
AGC-13 | 2016 Aug 08 | Maniema/Kimbilulenge | + | – | S | – | SRR15192529 |
AGC-14 | 2017 May 18 | Kirotshe/Rubaya | – | + | S | – | SRR15192528 |
AGC-15 | 2017 May 31 | Rutshuru/Hgr | – | + | S | – | SRR15192527 |
AGC-16 | 2017 Jun 10 | Rutshuru/Hgr | – | + | S | – | SRR15192526 |
AGC-17 | 2017 Jul 01 | Nyiragongo/Turunga | – | + | S | – | SRR15192525 |
AGC-18 | 2017 Jul 03 | Goma/Hop.Provincial | – | + | S§ | manA | SRR15192524 |
AGC-19 | 2017 Jul 03 | Goma/Hop.Provincial | – | + | S | – | SRR15192523 |
AGC-20 | 2019 Jul 03 | Goma/Hop.Provincial | – | + | S | – | SRR15192522 |
AGC-21 | 2017 Jul 06 | Karisimbi/Prison centrale | – | + | S | – | SRR15192520 |
AGC-22 | 2017 Jul 14 | Karisimbi/Majengo | – | + | S§ | manA | SRR15192519 |
AGC-23 | 2017 Jul 19 | Karisimbi/Majengo | – | + | R | rfbB | SRR15192518 |
AGC-24 | 2017 Jul 15 | Karisimbi/Majengo | – | + | S | rfbU | SRR15192517 |
*R, resistant; S, susceptible; +, positive; –, negative †Susceptibility to a virulent ICP1 phage (ICP1_2017_A_DRC) determined by strains yielding either complete resistance or forming turbid plaques in response to phage infection in plaque assay. The penultimate column indicates which strains had mutations in the O1-antigen biosynthetic complex and in other genes in the chromosome, with the mutated gene designated. AGC-18, AGC-22, and AGC-24 sustained 1, 1, and 18 bp deletion mutations in the indicated gene(s), resulting in a frame shift mutation in that gene, but all other ICP1 phage-resistant isolates sustained >1 missense mutation in the O-antigen biosynthetic gene cluster. ‡As detected by analysis using single-nucleotide polymorphism, insertion/deletion, or both. §Plaques were turbid as described elsewhere (29).
References
- World Health Organization. Cholera annual report 2020. Wkly Epidemiol Rec. 2021;96:445–60.
- Ingelbeen B, Hendrickx D, Miwanda B, van der Sande MAB, Mossoko M, Vochten H, et al. Recurrent cholera outbreaks, Democratic Republic of the Congo, 2008–2017. Emerg Infect Dis. 2019;25:856–64. DOIPubMedGoogle Scholar
- Weill FX, Domman D, Njamkepo E, Tarr C, Rauzier J, Fawal N, et al. Genomic history of the seventh pandemic of cholera in Africa. Science. 2017;358:785–9. DOIPubMedGoogle Scholar
- Okeke IN. Africa in the time of cholera: a history of pandemics from 1817 to the present [book review]. Emerg Infect Dis. 2012;18:362. DOIGoogle Scholar
- Moore S, Miwanda B, Sadji AY, Thefenne H, Jeddi F, Rebaudet S, et al. Relationship between distinct African cholera epidemics revealed via MLVA haplotyping of 337 Vibrio cholerae isolates. PLoS Negl Trop Dis. 2015;9:e0003817–0003817. DOIPubMedGoogle Scholar
- Irenge LM, Ambroise J, Mitangala PN, Bearzatto B, Kabangwa RKS, Durant JF, et al. Genomic analysis of pathogenic isolates of Vibrio cholerae from eastern Democratic Republic of the Congo (2014-2017). PLoS Negl Trop Dis. 2020;14:
e0007642 . DOIPubMedGoogle Scholar - Seed KD. Battling phages: how bacteria defend against viral attack. PLoS Pathog. 2015;11:
e1004847 . DOIPubMedGoogle Scholar - Faruque SM, Naser IB, Islam MJ, Faruque AS, Ghosh AN, Nair GB, et al. Seasonal epidemics of cholera inversely correlate with the prevalence of environmental cholera phages. Proc Natl Acad Sci U S A. 2005;102:1702–7. DOIPubMedGoogle Scholar
- Huq A, Sack RB, Nizam A, Longini IM, Nair GB, Ali A, et al. Critical factors influencing the occurrence of Vibrio cholerae in the environment of Bangladesh. Appl Environ Microbiol. 2005;71:4645–54. DOIPubMedGoogle Scholar
- Silva-Valenzuela CA, Camilli A. Niche adaptation limits bacteriophage predation of Vibrio cholerae in a nutrient-poor aquatic environment. Proc Natl Acad Sci U S A. 2019;116:1627–32. DOIPubMedGoogle Scholar
- Seed KD, Yen M, Shapiro BJ, Hilaire IJ, Charles RC, Teng JE, et al. Evolutionary consequences of intra-patient phage predation on microbial populations. eLife. 2014;3:
e03497 . DOIPubMedGoogle Scholar - LeGault KN, Hays SG, Angermeyer A, McKitterick AC, Johura FT, Sultana M, et al. Temporal shifts in antibiotic resistance elements govern phage-pathogen conflicts. Science. 2021;373:
eabg2166 . DOIPubMedGoogle Scholar - Hussain FA, Dubert J, Elsherbini J, Murphy M, VanInsberghe D, Arevalo P, et al. Rapid evolutionary turnover of mobile genetic elements drives bacterial resistance to phages. Science. 2021;374:488–92. DOIPubMedGoogle Scholar
- Seed KD, Bodi KL, Kropinski AM, Ackermann HW, Calderwood SB, Qadri F, et al. Evidence of a dominant lineage of Vibrio cholerae-specific lytic bacteriophages shed by cholera patients over a 10-year period in Dhaka, Bangladesh. MBio. 2011;2:e00334–10. DOIPubMedGoogle Scholar
- Angermeyer A, Das MM, Singh DV, Seed KD. Analysis of 19 highly conserved Vibrio cholerae bacteriophages isolated from environmental and patient sources over a twelve-year period. Viruses. 2018;10:10. DOIPubMedGoogle Scholar
- Ali A, Chen Y, Johnson JA, Redden E, Mayette Y, Rashid MH, et al. Recent clonal origin of cholera in Haiti. Emerg Infect Dis. 2011;17:699–701. DOIPubMedGoogle Scholar
- O’Hara BJ, Barth ZK, McKitterick AC, Seed KD. A highly specific phage defense system is a conserved feature of the Vibrio cholerae mobilome. PLoS Genet. 2017;13:
e1006838 . DOIPubMedGoogle Scholar - Lemey P, Rambaut A, Drummond AJ, Suchard MA. Bayesian phylogeography finds its roots. PLOS Comput Biol. 2009;5:
e1000520 . DOIPubMedGoogle Scholar - Grenfell BT, Pybus OG, Gog JR, Wood JL, Daly JM, Mumford JA, et al. Unifying the epidemiological and evolutionary dynamics of pathogens. Science. 2004;303:327–32. DOIPubMedGoogle Scholar
- Drummond AJ, Rambaut A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol. 2007;7:214. DOIPubMedGoogle Scholar
- Hasegawa M, Kishino H, Yano T. Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol. 1985;22:160–74. DOIPubMedGoogle Scholar
- Leaché AD, Banbury BL, Felsenstein J, de Oca AN, Stamatakis A. Short tree, long tree, right tree, wrong tree: new acquisition bias corrections for inferring SNP phylogenies. Syst Biol. 2015;64:1032–47. DOIPubMedGoogle Scholar
- Minin VN, Bloomquist EW, Suchard MA. Smooth skyride through a rough skyline: Bayesian coalescent-based inference of population dynamics. Mol Biol Evol. 2008;25:1459–71. DOIPubMedGoogle Scholar
- Strimmer K, Pybus OG. Exploring the demographic history of DNA sequences using the generalized skyline plot. Mol Biol Evol. 2001;18:2298–305. DOIPubMedGoogle Scholar
- Hall MD, Woolhouse ME, Rambaut A. The effects of sampling strategy on the quality of reconstruction of viral population dynamics using Bayesian skyline family coalescent methods: A simulation study. Virus Evol. 2016;2:
vew003 . DOIPubMedGoogle Scholar - Lemey P, Kosakovsky Pond SL, Drummond AJ, Pybus OG, Shapiro B, Barroso H, et al. Synonymous substitution rates predict HIV disease progression as a result of underlying replication dynamics. PLOS Comput Biol. 2007;3:
e29 . DOIPubMedGoogle Scholar - Mavian C, Paisie TK, Alam MT, Browne C, Beau De Rochars VM, Nembrini S, et al. Toxigenic Vibrio cholerae evolution and establishment of reservoirs in aquatic ecosystems. Proc Natl Acad Sci U S A. 2020;117:7897–904. DOIPubMedGoogle Scholar
- Seed KD, Faruque SM, Mekalanos JJ, Calderwood SB, Qadri F, Camilli A. Phase variable O antigen biosynthetic genes control expression of the major protective antigen and bacteriophage receptor in Vibrio cholerae O1. PLoS Pathog. 2012;8:
e1002917 . DOIPubMedGoogle Scholar - Seed KD, Lazinski DW, Calderwood SB, Camilli A. A bacteriophage encodes its own CRISPR/Cas adaptive response to evade host innate immunity. Nature. 2013;494:489–91. DOIPubMedGoogle Scholar
- Kamp HD, Patimalla-Dipali B, Lazinski DW, Wallace-Gadsden F, Camilli A. Gene fitness landscapes of Vibrio cholerae at important stages of its life cycle. PLoS Pathog. 2013;9:
e1003800 . DOIPubMedGoogle Scholar - Oechslin F. Resistance development to bacteriophages occurring during bacteriophage therapy. Viruses. 2018;10:10. DOIPubMedGoogle Scholar
1Previously presented at Epidemics—8th International Conference on Infectious Diseases Dynamics [online], November 30–December 3, 2021.
2These authors contributed equally to this article.