Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 30, Number 12—December 2024
Research

Rio Mamore Hantavirus Endemicity, Peruvian Amazon, 2020

Marta Piche-Ovares, Maria Paquita García, Andres Moreira-Soto, Maribel Dana Figueroa-Romero, Nancy Susy Merino-Sarmiento, Adolfo Ismael Marcelo-Ñique, Edward Málaga-Trillo, Dora Esther Valencia Manosalva, Miladi Gatty-Nogueira, César Augusto Cabezas Sanchez, and Jan Felix DrexlerComments to Author 
Author affiliation: Charité-Universitätsmedizin Berlin, Berlin, Germany (M. Piche-Ovares, A. Moreira-Soto, J.F. Drexler); Instituto Nacional de Salud, Lima, Peru (M. Paquita García, M.D. Figueroa-Romero, N.S. Merino-Sarmiento, A.I. Marcelo-Ñique, C.A. Cabezas Sanchez); Universidad Nacional, Heredia, Costa Rica (A. Moreira-Soto); Universidad Peruana Cayetano, Lima (E. Málaga-Trillo); Laboratorio de Referencia Regional de Salud Pública, Lambayeque, Peru (D.E. Valencia Manosalva); Laboratorio de Referencia Regional de Salud Pública, Loreto, Peru (M. Gatty-Nogueira); German Centre for Infection Research, Berlin, Germany (J.F. Drexler)

Main Article

Figure 1

Locations and climate classifications related to study of Rio Mamore hantavirus endemicity in the Peruvian Amazon, 2020. A) Location of Peru (green) in South America. B) Regions in Peru where 3,400 serum samples from febrile patients were collected and stored during a dengue outbreak that overlapped with COVID-19 (24) in 3 diverse ecoregions: Loreto (Amazon; n = 1,972 samples), Lambayeque (coastal desert /dry forest; n = 743 samples), and Lima (coastal desert; n = 685 samples) (One Earth, https://www.oneearth.org). C) Climate classification regions of Peru and distribution of Oligoryzomys microtis small-eared rice rats (white dots) (https://www.gbif.org) (26). All maps were created by using QGIS 3.28.10 (https://hub.arcgis.com) based on freely available maps from Bucknell University.

Figure 1. Locations and climate classifications related to study of Rio Mamore hantavirus endemicity in the Peruvian Amazon, 2020. A) Location of Peru (green) in South America. B) Regions in Peru where 3,400 serum samples from febrile patients were collected and stored during a dengue outbreak that overlapped with COVID-19 (24) in 3 diverse ecoregions: Loreto (Amazon; n = 1,972 samples), Lambayeque (coastal desert /dry forest; n = 743 samples), and Lima (coastal desert; n = 685 samples) (One Earth, https://www.oneearth.org). C) Climate classification regions of Peru and distribution of Oligoryzomys microtis small-eared rice rats (white dots) (https://www.gbif.org) (26). All maps were created by using QGIS 3.28.10 (https://hub.arcgis.com) based on freely available maps from Bucknell University.

Main Article

References
  1. Laserna  A, Barahona-Correa  J, Baquero  L, Castañeda-Cardona  C, Rosselli  D. Economic impact of dengue fever in Latin America and the Caribbean: a systematic review. Rev Panam Salud Publica. 2018;42:e111. DOIPubMedGoogle Scholar
  2. Moreira  J, Bressan  CS, Brasil  P, Siqueira  AM. Epidemiology of acute febrile illness in Latin America. Clin Microbiol Infect. 2018;24:82735. DOIPubMedGoogle Scholar
  3. Moreira  J, Barros  J, Lapouble  O, Lacerda  MVG, Felger  I, Brasil  P, et al. When fever is not malaria in Latin America: a systematic review. BMC Med. 2020;18:294. DOIPubMedGoogle Scholar
  4. Mattar  S, Guzmán  C, Figueiredo  LT. Diagnosis of hantavirus infection in humans. Expert Rev Anti Infect Ther. 2015;13:93946. DOIPubMedGoogle Scholar
  5. Figueiredo  LT, Souza  WM, Ferrés  M, Enria  DA. Hantaviruses and cardiopulmonary syndrome in South America. Virus Res. 2014;187:4354. DOIPubMedGoogle Scholar
  6. de Oliveira  RC, Cordeiro-Santos  M, Guterres  A, Fernandes  J, de Melo  AX, João  GA, et al. Rio Mamoré virus and hantavirus pulmonary syndrome, Brazil. Emerg Infect Dis. 2014;20:156870. DOIPubMedGoogle Scholar
  7. Saavedra-Velasco  M, Oyarce-Calderón  A, Vergas-Herrera  N, Pichardo-Rodriguez  R, Moreno-Arteaga  C. Hantavirus en la selva peruana, una revisión sistemática de series y casos reportados. Revista de la Facultad de Medicina Humana. 2021;21:8518. DOIGoogle Scholar
  8. Powers  AM, Mercer  DR, Watts  DM, Guzman  H, Fulhorst  CF, Popov  VL, et al. Isolation and genetic characterization of a hantavirus (Bunyaviridae: Hantavirus) from a rodent, Oligoryzomys microtis (Muridae), collected in northeastern Peru. Am J Trop Med Hyg. 1999;61:928. DOIPubMedGoogle Scholar
  9. Klempa  B, Fichet-Calvet  E, Lecompte  E, Auste  B, Aniskin  V, Meisel  H, et al. Hantavirus in African wood mouse, Guinea. Emerg Infect Dis. 2006;12:83840. DOIPubMedGoogle Scholar
  10. Leparc-Goffart  I, Baragatti  M, Temmam  S, Tuiskunen  A, Moureau  G, Charrel  R, et al. Development and validation of real-time one-step reverse transcription-PCR for the detection and typing of dengue viruses. J Clin Virol. 2009;45:616. DOIPubMedGoogle Scholar
  11. Weiss  S, Sudi  LE, Düx  A, Mangu  CD, Ntinginya  NE, Shirima  GM, et al. Kiwira virus, a newfound hantavirus discovered in free-tailed bats (Molossidae) in East and Central Africa. Viruses. 2022;14:2368. DOIPubMedGoogle Scholar
  12. Ronquist  F, Teslenko  M, van der Mark  P, Ayres  DL, Darling  A, Höhna  S, et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol. 2012;61:53942. DOIPubMedGoogle Scholar
  13. Simmonds  P. SSE: a nucleotide and amino acid sequence analysis platform. BMC Res Notes. 2012;5:50. DOIPubMedGoogle Scholar
  14. Stecher  G, Tamura  K, Kumar  S. Molecular Evolutionary Genetics Analysis (MEGA) for macOS. Mol Biol Evol. 2020;37:12379. DOIPubMedGoogle Scholar
  15. Klempa  B, Koivogui  L, Sylla  O, Koulemou  K, Auste  B, Krüger  DH, et al. Serological evidence of human hantavirus infections in Guinea, West Africa. J Infect Dis. 2010;201:10314. DOIPubMedGoogle Scholar
  16. Landry  ML. Immunoglobulin M for acute infection, true or false? Clin Vaccine Immunol. 2016;23:5405. DOIPubMedGoogle Scholar
  17. Yadouleton  A, Sander  AL, Moreira-Soto  A, Tchibozo  C, Hounkanrin  G, Badou  Y, et al. Limited specificity of serologic tests for SARS-CoV-2 antibody detection, Benin. Emerg Infect Dis. 2021;27:2337. DOIPubMedGoogle Scholar
  18. Mrozek-Gorska  P, Buschle  A, Pich  D, Schwarzmayr  T, Fechtner  R, Scialdone  A, et al. Epstein-Barr virus reprograms human B lymphocytes immediately in the prelatent phase of infection. Proc Natl Acad Sci U S A. 2019;116:1604655. DOIPubMedGoogle Scholar
  19. Dauby  N, Kummert  C, Lecomte  S, Liesnard  C, Delforge  ML, Donner  C, et al. Primary human cytomegalovirus infection induces the expansion of virus-specific activated and atypical memory B cells. J Infect Dis. 2014;210:127585. DOIPubMedGoogle Scholar
  20. Wesselmann  KM, Postigo-Hidalgo  I, Pezzi  L, de Oliveira-Filho  EF, Fischer  C, de Lamballerie  X, et al. Emergence of Oropouche fever in Latin America: a narrative review. Lancet Infect Dis. 2024;24:e43952. DOIPubMedGoogle Scholar
  21. Fischer  C, Bozza  F, Merino Merino  XJ, Pedroso  C, de Oliveira Filho  EF, Moreira-Soto  A, et al. Robustness of serologic investigations for chikungunya and Mayaro viruses following coemergence. MSphere. 2020;5:e009159. DOIPubMedGoogle Scholar
  22. Rosado  J, Carrasco-Escobar  G, Nolasco  O, Garro  K, Rodriguez-Ferruci  H, Guzman-Guzman  M, et al. Malaria transmission structure in the Peruvian Amazon through antibody signatures to Plasmodium vivax. PLoS Negl Trop Dis. 2022;16:e0010415. DOIPubMedGoogle Scholar
  23. Lapidus  S, Liu  F, Casanovas-Massana  A, Dai  Y, Huck  JD, Lucas  C, et al. Plasmodium infection is associated with cross-reactive antibodies to carbohydrate epitopes on the SARS-CoV-2 Spike protein. Sci Rep. 2022;12:22175. DOIPubMedGoogle Scholar
  24. Plasencia-Dueñas  R, Failoc-Rojas  VE, Rodriguez-Morales  AJ. Impact of the COVID-19 pandemic on the incidence of dengue fever in Peru. J Med Virol. 2022;94:3938. DOIPubMedGoogle Scholar
  25. Pádua  M, Souza  WM, Lauretti  F, Figueiredo  LT. Development of a novel plaque reduction neutralisation test for hantavirus infection. Mem Inst Oswaldo Cruz. 2015;110:6248."https://doi.org/10.1590/0074-02760150102" DOIPubMedGoogle Scholar
  26. Beck  HE, Zimmermann  NE, McVicar  TR, Vergopolan  N, Berg  A, Wood  EF. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci Data. 2018;5:180214. DOIPubMedGoogle Scholar
  27. de Oliveira-Filho  EF, Cabezas Sánchez  CA, Manosalva  DEV, Romero  MDF, Sarmiento  NSM, Ñique  AIM, et al. Fort Sherman virus infection in human, Peru, 2020. Emerg Infect Dis. 2024;30:22114. DOIPubMedGoogle Scholar
  28. Bellomo  CM, Pires-Marczeski  FC, Padula  PJ. Viral load of patients with hantavirus pulmonary syndrome in Argentina. J Med Virol. 2015;87:182330. DOIPubMedGoogle Scholar
  29. Klempa  B. Reassortment events in the evolution of hantaviruses. Virus Genes. 2018;54:63846. DOIPubMedGoogle Scholar
  30. Lustig  Y, Mendelson  E, Mandelboim  M, Biber  A, Levin  EG, Cohen  C, et al. Existence of immunological memory response in true sero-negative individuals post COVID-19 molecular diagnosis. Clin Infect Dis. 2022;10:ciac196. DOIPubMedGoogle Scholar
  31. Vapalahti  O, Kallio-Kokko  H, Närvänen  A, Julkunen  I, Lundkvist  A, Plyusnin  A, et al. Human B-cell epitopes of Puumala virus nucleocapsid protein, the major antigen in early serological response. J Med Virol. 1995;46:293303. DOIPubMedGoogle Scholar
  32. MacNeil  A, Comer  JA, Ksiazek  TG, Rollin  PE. Sin Nombre virus-specific immunoglobulin M and G kinetics in hantavirus pulmonary syndrome and the role played by serologic responses in predicting disease outcome. J Infect Dis. 2010;202:2426. DOIPubMedGoogle Scholar
  33. Padula  PJ, Colavecchia  SB, Martínez  VP, Gonzalez Della Valle  MO, Edelstein  A, Miguel  SD, et al. Genetic diversity, distribution, and serological features of hantavirus infection in five countries in South America. J Clin Microbiol. 2000;38:302935. DOIPubMedGoogle Scholar
  34. Milholland  MT, Castro-Arellano  I, Suzán  G, Garcia-Peña  GE, Lee  TE Jr, Rohde  RE, et al. Global diversity and distribution of hantaviruses and their hosts. EcoHealth. 2018;15:163208. DOIPubMedGoogle Scholar
  35. Lederer  S, Lattwein  E, Hanke  M, Sonnenberg  K, Stoecker  W, Lundkvist  Å, et al. Indirect immunofluorescence assay for the simultaneous detection of antibodies against clinically important old and new world hantaviruses. PLoS Negl Trop Dis. 2013;7:e2157. DOIPubMedGoogle Scholar
  36. Castillo Oré  RM, Forshey  BM, Huaman  A, Villaran  MV, Long  KC, Kochel  TJ, et al. Serologic evidence for human hantavirus infection in Peru. Vector Borne Zoonotic Dis. 2012;12:6839. DOIPubMedGoogle Scholar
  37. Firth  C, Tokarz  R, Simith  DB, Nunes  MR, Bhat  M, Rosa  ES, et al. Diversity and distribution of hantaviruses in South America. J Virol. 2012;86:1375666. DOIPubMedGoogle Scholar
  38. Jonsson  CB, Figueiredo  LT, Vapalahti  O. A global perspective on hantavirus ecology, epidemiology, and disease. Clin Microbiol Rev. 2010;23:41241. DOIPubMedGoogle Scholar
  39. Astorga  F, Escobar  LE, Poo-Muñoz  D, Escobar-Dodero  J, Rojas-Hucks  S, Alvarado-Rybak  M, et al. Distributional ecology of Andes hantavirus: a macroecological approach. Int J Health Geogr. 2018;17:22. DOIPubMedGoogle Scholar
  40. Terças-Trettel  ACP, Melo  AVG, Bonilha  SMF, Moraes  JM, Oliveira  RC, Guterres  A, et al. Hantavirus pulmonary syndrome in children: case report and case series from an endemic area of Brazil. Rev Inst Med Trop São Paulo. 2019;61:e65. DOIPubMedGoogle Scholar
  41. Elgh  F, Lundkvist  A, Alexeyev  OA, Stenlund  H, Avsic-Zupanc  T, Hjelle  B, et al. Serological diagnosis of hantavirus infections by an enzyme-linked immunosorbent assay based on detection of immunoglobulin G and M responses to recombinant nucleocapsid proteins of five viral serotypes. J Clin Microbiol. 1997;35:112230. DOIPubMedGoogle Scholar
  42. Li  W, Cao  S, Zhang  Q, Li  J, Zhang  S, Wu  W, et al. Comparison of serological assays to titrate Hantaan and Seoul hantavirus-specific antibodies. Virol J. 2017;14:133. DOIPubMedGoogle Scholar
  43. Krüger  DH, Schönrich  G, Klempa  B. Human pathogenic hantaviruses and prevention of infection. Hum Vaccin. 2011;7:68593. DOIPubMedGoogle Scholar
  44. Saavedra  F, Díaz  FE, Retamal-Díaz  A, Covián  C, González  PA, Kalergis  AM. Immune response during hantavirus diseases: implications for immunotherapies and vaccine design. Immunology. 2021;163:26277. DOIPubMedGoogle Scholar
  45. Hepojoki  J, Cabrera  LE, Hepojoki  S, Bellomo  C, Kareinen  L, Andersson  LC, et al. Hantavirus infection-induced B cell activation elevates free light chains levels in circulation. PLoS Pathog. 2021;17:e1009843. DOIPubMedGoogle Scholar
  46. Martinez  VP, Bellomo  CM, Cacace  ML, Suarez  P, Bogni  L, Padula  PJ. Hantavirus pulmonary syndrome in Argentina, 1995-2008. Emerg Infect Dis. 2010;16:185360. DOIPubMedGoogle Scholar
  47. Chen  Y, Li  N, Lourenço  J, Wang  L, Cazelles  B, Dong  L, et al.; CMMID COVID-19 Working Group. Measuring the effects of COVID-19-related disruption on dengue transmission in southeast Asia and Latin America: a statistical modelling study. Lancet Infect Dis. 2022;22:65767. DOIPubMedGoogle Scholar
  48. Vial  PA, Ferrés  M, Vial  C, Klingström  J, Ahlm  C, López  R, et al. Hantavirus in humans: a review of clinical aspects and management. Lancet Infect Dis. 2023;23:e37182. DOIPubMedGoogle Scholar

Main Article

Page created: October 25, 2024
Page updated: November 26, 2024
Page reviewed: November 26, 2024
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external