Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 30, Number 8—August 2024
Research

Metagenomic Detection of Bacterial Zoonotic Pathogens among Febrile Patients, Tanzania, 2007–20091

Robert J. Rolfe, Sarah W. Sheldon, Luke C. Kingry, Jeannine M. Petersen, Venance P. Maro, Grace D. Kinabo, Wilbrod Saganda, Michael J. Maze, Jo E.B. Halliday, William L. Nicholson, Renee L. Galloway, Matthew P. Rubach, and John A. CrumpComments to Author 
Author affiliations: Duke University Department of Medicine Division of Infectious Diseases and International Health, Durham, North Carolina, USA (R.J. Rolfe, M.P. Rubach, J.A. Crump); Centers for Disease Control and Prevention, Fort Collins, Colorado, USA (S.W. Sheldon, L.C. Kingry, J.M. Petersen); Kilimanjaro Christian Medical Centre, Moshi, Tanzania (V.P. Maro, G.D. Kinabo, M.P. Rubach, J.A. Crump); Kilimanjaro Christian Medical University College, Moshi (V.P. Maro, G.D. Kinabo, J.A. Crump); Mawenzi Regional Referral Hospital, Moshi (W. Saganda); University of Otago Department of Medicine, Christchurch, New Zealand (M.J. Maze); University of Glasgow School of Biodiversity, One Health and Veterinary Medicine, Glasgow, Scotland, UK (J.E.B. Halliday); Centers for Disease Control and Prevention, Atlanta, Georgia, USA (W.L. Nicholson, R.L. Galloway); Duke-National University of Singapore Programme in Emerging Infectious Diseases, Singapore (M.P. Rubach); Duke University Global Health Institute, Durham (M.P. Rubach, J.A. Crump); Centre for International Health, University of Otago, Dunedin, New Zealand (J.A. Crump)

Main Article

Figure 1

Phylogenetic tree for Candidatus Neoehrlichia spp. identified during metagenomic detection of bacterial zoonotic pathogens among febrile patients, Tanzania, 2007–2009. Bold text indicates the sequence from this study. Numbers in parentheses indicate GenBank accession numbers. A 1,467-bp 16S sequence amplified from a bone marrow aspirate from a patient from South Africa (GenBank accession no. OP208838) matched 100% over the 296-bp variable regions 1 and 2 target sequence amplified in this study (18). Scale bar indicates nucleotide substitutions per site.

Figure 1. Phylogenetic tree for Candidatus Neoehrlichia spp. identified during metagenomic detection of bacterial zoonotic pathogens among febrile patients, Tanzania, 2007–2009. Bold text indicates the sequence from this study. Numbers in parentheses indicate GenBank accession numbers. A 1,467-bp 16S sequence amplified from a bone marrow aspirate from a patient from South Africa (GenBank accession no. OP208838) matched 100% over the 296-bp variable regions 1 and 2 target sequence amplified in this study (18). Scale bar indicates nucleotide substitutions per site.

Main Article

References
  1. Prasad  N, Murdoch  DR, Reyburn  H, Crump  JA. Etiology of severe febrile illness in low- and middle-income countries: a systematic review. PLoS One. 2015;10:e0127962. DOIPubMedGoogle Scholar
  2. Maina  AN, Farris  CM, Odhiambo  A, Jiang  J, Laktabai  J, Armstrong  J, et al. Q fever, scrub typhus, and rickettsial diseases in children, Kenya, 2011–2012. Emerg Infect Dis. 2016;22:8836. DOIPubMedGoogle Scholar
  3. Dreyfus  A, Dyal  JW, Pearson  R, Kankya  C, Kajura  C, Alinaitwe  L, et al. Leptospira seroprevalence and risk factors in health centre patients in Hoima District, Western Uganda. PLoS Negl Trop Dis. 2016;10:e0004858. DOIPubMedGoogle Scholar
  4. Prabhu  M, Nicholson  WL, Roche  AJ, Kersh  GJ, Fitzpatrick  KA, Oliver  LD, et al. Q fever, spotted fever group, and typhus group rickettsioses among hospitalized febrile patients in northern Tanzania. Clin Infect Dis. 2011;53:e815. DOIPubMedGoogle Scholar
  5. Biggs  HM, Bui  DM, Galloway  RL, Stoddard  RA, Shadomy  SV, Morrissey  AB, et al. Leptospirosis among hospitalized febrile patients in northern Tanzania. Am J Trop Med Hyg. 2011;85:27581. DOIPubMedGoogle Scholar
  6. Crump  JA, Morrissey  AB, Nicholson  WL, Massung  RF, Stoddard  RA, Galloway  RL, et al. Etiology of severe non-malaria febrile illness in Northern Tanzania: a prospective cohort study. PLoS Negl Trop Dis. 2013;7:e2324. DOIPubMedGoogle Scholar
  7. Maze  MJ, Cash-Goldwasser  S, Rubach  MP, Biggs  HM, Galloway  RL, Sharples  KJ, et al. Risk factors for human acute leptospirosis in northern Tanzania. PLoS Negl Trop Dis. 2018;12:e0006372. DOIPubMedGoogle Scholar
  8. Pisharody  S, Rubach  MP, Carugati  M, Nicholson  WL, Perniciaro  JL, Biggs  HM, et al. Incidence estimates of acute Q fever and spotted fever group rickettsioses, Kilimanjaro, Tanzania, from 2007 to 2008 and from 2012 to 2014. Am J Trop Med Hyg. 2021;106:494503. DOIPubMedGoogle Scholar
  9. Allan  KJ, Maze  MJ, Galloway  RL, Rubach  MP, Biggs  HM, Halliday  JEB, et al. Molecular detection and typing of pathogenic Leptospira in febrile patients and phylogenetic comparison with Leptospira detected among animals in Tanzania. Am J Trop Med Hyg. 2020;103:142734. DOIPubMedGoogle Scholar
  10. Carugati  M, Kilonzo  KG, Crump  JA. Fever, bacterial zoonoses, and One Health in sub-Saharan Africa. Clin Med (Lond). 2019;19:37580. DOIPubMedGoogle Scholar
  11. Kingry  L, Sheldon  S, Oatman  S, Pritt  B, Anacker  M, Bjork  J, et al. Targeted metagenomics for clinical detection and discovery of bacterial tick-borne pathogens. J Clin Microbiol. 2020;58:e0014720. DOIPubMedGoogle Scholar
  12. Crump  JA, Ramadhani  HO, Morrissey  AB, Msuya  LJ, Yang  LY, Chow  SC, et al. Invasive bacterial and fungal infections among hospitalized HIV-infected and HIV-uninfected children and infants in northern Tanzania. Trop Med Int Health. 2011;16:8307. DOIPubMedGoogle Scholar
  13. Crump  JA, Ramadhani  HO, Morrissey  AB, Saganda  W, Mwako  MS, Yang  LY, et al. Invasive bacterial and fungal infections among hospitalized HIV-infected and HIV-uninfected adults and adolescents in northern Tanzania. Clin Infect Dis. 2011;52:3418. DOIPubMedGoogle Scholar
  14. Wood  DE, Salzberg  SL. Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome Biol. 2014;15:R46. DOIPubMedGoogle Scholar
  15. Kumar  S, Stecher  G, Li  M, Knyaz  C, Tamura  K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol Biol Evol. 2018;35:15479. DOIPubMedGoogle Scholar
  16. Yoshida  K, Bartel  A, Chipman  JJ, Bohn  J, D’Augustino McGowan  C, Barrett  M, et al. tableone: create ‘Table 1’ to describe baseline characteristics with or without propensity score weights [cited 2023 Dec 13]. https://cloud.r-project.org/web/packages/tableone/tableone.pdf
  17. Wickham  H, Averick  M, Bryan  J, Chang  W, McGowan  LDA, François  R, et al. Welcome to the tidyverse. J Open Source Softw. 2019;4:1686. DOIGoogle Scholar
  18. Bamford  C, Blumberg  LH, Bosman  M, Frean  J, Hoek  KGP, Miles  J, et al. Neoehrlichiosis in symptomatic immunocompetent child, South Africa. Emerg Infect Dis. 2023;29:40710. DOIPubMedGoogle Scholar
  19. Bitam  I, Dittmar  K, Parola  P, Whiting  MF, Raoult  D. Fleas and flea-borne diseases. Int J Infect Dis. 2010;14:e66776. DOIPubMedGoogle Scholar
  20. Leulmi  H, Socolovschi  C, Laudisoit  A, Houemenou  G, Davoust  B, Bitam  I, et al. Detection of Rickettsia felis, Rickettsia typhi, Bartonella species and Yersinia pestis in fleas (Siphonaptera) from Africa. PLoS Negl Trop Dis. 2014;8:e3152. DOIPubMedGoogle Scholar
  21. Theonest  NO, Carter  RW, Amani  N, Doherty  SL, Hugho  E, Keyyu  JD, et al. Molecular detection and genetic characterization of Bartonella species from rodents and their associated ectoparasites from northern Tanzania. PLoS One. 2019;14:e0223667. DOIPubMedGoogle Scholar
  22. Badiaga  S, Brouqui  P. Human louse-transmitted infectious diseases. Clin Microbiol Infect. 2012;18:3327. DOIPubMedGoogle Scholar
  23. Fournier  PE, Jensenius  M, Laferl  H, Vene  S, Raoult  D. Kinetics of antibody responses in Rickettsia africae and Rickettsia conorii infections. Clin Diagn Lab Immunol. 2002;9:3248.PubMedGoogle Scholar
  24. Harrison  N, Burgmann  H, Forstner  C, Ramharter  M, Széll  M, Schötta  AM, et al. Molecular diagnosis of African tick bite fever using eschar swabs in a traveller returning from Tanzania. Wien Klin Wochenschr. 2016;128:6025. DOIPubMedGoogle Scholar
  25. Jensenius  M, Fournier  PE, Raoult  D, Raoult  D. Rickettsioses and the international traveler. Clin Infect Dis. 2004;39:14939. DOIPubMedGoogle Scholar
  26. Yoshikawa  H, Kimura  M, Ogawa  M, Rolain  J-M, Raoult  D. Laboratory-confirmed Mediterranean spotted fever in a Japanese traveler to Kenya. Am J Trop Med Hyg. 2005;73:10869. DOIPubMedGoogle Scholar
  27. Rutherford  JS, Macaluso  KR, Smith  N, Zaki  SR, Paddock  CD, Davis  J, et al. Fatal spotted fever rickettsiosis, Kenya. Emerg Infect Dis. 2004;10:9103. DOIPubMedGoogle Scholar
  28. Mutai  BK, Wainaina  JM, Magiri  CG, Nganga  JK, Ithondeka  PM, Njagi  ON, et al. Zoonotic surveillance for rickettsiae in domestic animals in Kenya. Vector Borne Zoonotic Dis. 2013;13:3606. DOIPubMedGoogle Scholar
  29. Zemtsova  GE, Apanaskevich  DA, Reeves  WK, Hahn  M, Snellgrove  A, Levin  ML. Phylogeography of Rhipicephalus sanguineus sensu lato and its relationships with climatic factors. Exp Appl Acarol. 2016;69:191203. DOIPubMedGoogle Scholar
  30. Lynen  G, Zeman  P, Bakuname  C, Di Giulio  G, Mtui  P, Sanka  P, et al. Cattle ticks of the genera Rhipicephalus and Amblyomma of economic importance in Tanzania: distribution assessed with GIS based on an extensive field survey. Exp Appl Acarol. 2007;43:30319. DOIPubMedGoogle Scholar
  31. Schwameis  M, Auer  J, Mitteregger  D, Simonitsch-Klupp  I, Ramharter  M, Burgmann  H, et al. Anaplasmataceae-specific PCR for diagnosis and therapeutic guidance for symptomatic neoehrlichiosis in immunocompetent host. Emerg Infect Dis. 2016;22:2814. DOIPubMedGoogle Scholar
  32. Motto  SK, Shirima  GM, de Clare Bronsvoort  BM, Cook  EAJ. Epidemiology of leptospirosis in Tanzania: A review of the current status, serogroup diversity and reservoirs. PLoS Negl Trop Dis. 2021;15:e0009918. DOIPubMedGoogle Scholar
  33. Hagedoorn  NN, Maze  MJ, Carugati  M, Cash-Goldwasser  S, Allan  KJ, Chen  K, et al. Global distribution of Leptospira serovar isolations and detections from animal host species: A systematic review and online database. Trop Med Int Health. 2024;29:16172. DOIPubMedGoogle Scholar

Main Article

1Preliminary results of this study were presented at the 72nd American Society of Tropical Medicine and Hygiene Annual Meeting; October 18­–22, 2023; Chicago, Illinois, USA.

Page created: June 15, 2024
Page updated: July 20, 2024
Page reviewed: July 20, 2024
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external