Volume 31, Number 10—October 2025
Research
Multidrug-Resistant pESI-Harboring Salmonella enterica Serovar Muenchen Sequence Type 82 in Poultry and Humans, Israel, 2020–2023
Table 2
Phenotypic resistance and presence of acquired antimicrobial resistance genes known to confer resistance in Salmonella enterica serovar Muenchen in study of Salmonella Muenchen in poultry and humans, Israel, 2020–2023*
Antimicrobial class and drug | MIC cutoff, µg/mL | No. infections/no. tested (%) | Relevant AMR genes and point mutations present in tested isolates (no.) |
---|---|---|---|
Tetracyclines | |||
Tetracycline |
16 |
15/15 (100)† |
tetA (13), tetA + tetM (1) |
Aminoglycosides | |||
Streptomycin | 32 | 14/15 (93.3) | aadA1 (13), aadA1 + aadA2 (1) |
Gentamicin |
16 |
0/15 (0) |
None |
Phenicols | |||
Chloramphenicol |
32 |
6/15 (40.0)† |
floR (4), floR + cmlA1 (1) |
Penicillins | |||
Ampicillin | 32 | 7/15 (46.7)† | blaTEM-1 (5), blaTEM-176 (1) |
Amoxicillin/clavulanic acid, 2:1 ratio |
32/16 |
0/15 (0) |
None |
Cephalosporins | |||
Cefoxitin | 32 | 0/15 (0) | None |
Ceftriaxone |
4 |
0/15 (0) |
None |
Folate pathway antagonists | |||
Sulfisoxazole | 256 | 15/15† (100) | sul1 (13), sul2 (1) |
Trimethoprim/sulfamethoxazole |
4/76 |
14/15† (93.3) |
dfrA14 + sul1 (10), dfrA14 (1), dfrA12 + dfrA14 + sul2 (1) |
Quinolones | |||
Ciprofloxacin | 0.12‡ | 11/15 (73.3) | qnrB19 (7§), qnrS1 (3), gyrA S83F (1), qnrS1 + gyrA S83F (1) |
Nalidixic acid |
32 |
4/15 (26.7) |
qnrB19 (1), qnrS1 (1), gyrA S83F (1), qnrS1 + gyrA S83F (1) |
Macrolides | |||
Azithromycin |
32 |
0/15 (0) |
None |
Carbapenems | |||
Meropenem | 4 | 0/15 (0) | None |
*AMR, antimicrobial resistance; +, genes found simultaneously on the same isolate. †>1 isolates exhibited phenotypic resistance without the identification of a relevant AMR gene ‡MIC cutoff for decreased susceptibility as a marker for emerging fluoroquinolone resistance (20). §One isolate (Br04) harbored the qnrB19 gene but was sensitive to ciprofloxacin (MIC = 0.03 µg/mL)
References
- Kirk MD, Pires SM, Black RE, Caipo M, Crump JA, Devleesschauwer B, et al. World Health Organization estimates of the global and regional disease burden of 22 foodborne bacterial, protozoal, and viral diseases, 2010: a data synthesis. PLoS Med. 2015;12:
e1001921 . DOIPubMedGoogle Scholar - Koutsoumanis K, Allende A, Alvarez-Ordóñez A, Bolton D, Bover-Cid S, Chemaly M, et al.; EFSA Panel on Biological Hazards (EFSA BIOHAZ Panel). Salmonella control in poultry flocks and its public health impact. EFSA J. 2019;17:
e05596 .PubMedGoogle Scholar - Gast RK, Porter RE. Salmonella infections. In: Swayne DE Boulianne M, Logue CM, McDougald LR, Nair V, Suarez DL, et al., editors. Diseases of poultry. 14th ed. Hoboken (NJ, USA): Wiley-Blackwell; 2020. p. 719–53.
- Bassal R, Davidovich-Cohen M, Yakunin E, Rokney A, Ken-Dror S, Strauss M, et al. Trends in the epidemiology of non-typhoidal salmonellosis in Israel between 2010 and 2021. Int J Environ Res Public Health. 2023;20:5626. DOIPubMedGoogle Scholar
- European Centre for Disease Prevention and Control. Introduction to the annual epidemiological report. 2022 [cited 2024 Sep 20]. https://ecdc.europa.eu/en/annual-epidemiological-reports/methods
- Mikoleit M, Van Duyne MS, Halpin J, McGlinchey B, Fields PI. Variable expression of O:61 in Salmonella group C2. J Clin Microbiol. 2012;50:4098–9. DOIPubMedGoogle Scholar
- Israel Ministry of Health. Jerusalem Central Laboratories annual reports [in Hebrew] [cited 2024 Oct 9]. https://www.gov.il/he/collectors/publications?officeId=104cb0f4-d65a-4692-b590-94af928c19c0&limit=10&UnitId=d46cf637-e0b1-4b56-ae75-4e58f67ca8bf.
- Cohen E, Kriger O, Amit S, Davidovich M, Rahav G, Gal-Mor O. The emergence of a multidrug resistant Salmonella Muenchen in Israel is associated with horizontal acquisition of the epidemic pESI plasmid. Clin Microbiol Infect. 2022;28:1499 e7–e14.
- Aviv G, Tsyba K, Steck N, Salmon-Divon M, Cornelius A, Rahav G, et al. A unique megaplasmid contributes to stress tolerance and pathogenicity of an emergent Salmonella enterica serovar Infantis strain. Environ Microbiol. 2014;16:977–94. DOIPubMedGoogle Scholar
- Franco A, Leekitcharoenphon P, Feltrin F, Alba P, Cordaro G, Iurescia M, et al. Emergence of a clonal lineage of multidrug-resistant ESBL-producing Salmonella Infantis transmitted from broilers and broiler meat to humans in Italy between 2011 and 2014. PLoS One. 2015;10:
e0144802 . DOIPubMedGoogle Scholar - Alvarez DM, Barrón-Montenegro R, Conejeros J, Rivera D, Undurraga EA, Moreno-Switt AI. A review of the global emergence of multidrug-resistant Salmonella enterica subsp. enterica Serovar Infantis. Int J Food Microbiol. 2023;403:
110297 .PubMedGoogle Scholar - International Organization for Standardization. ISO 65791:2017 + A1:2020. Microbiology of the food chain—horizontal method for the detection, enumeration and serotyping of Salmonella. Part 1: detection of Salmonella spp. Geneva: The Organization; 2017 [cited 2024 Oct 2]. https://www.iso.org/standard/56712.html
- Arnold K, Lim S, Rakler T, Rovira A, Satuchne C, Yechezkel E, et al. Using genetic markers for detection and subtyping of the emerging Salmonella enterica subspecies enterica serotype Muenchen. Poult Sci. 2022;101:
102181 . DOIPubMedGoogle Scholar - Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol. 2017;13:
e1005595 . DOIPubMedGoogle Scholar - Kozlov AM, Darriba D, Flouri T, Morel B, Stamatakis A. RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics. 2019;35:4453–5. DOIPubMedGoogle Scholar
- Nurk S, Bankevich A, Antipov D, Gurevich AA, Korobeynikov A, Lapidus A, et al. Assembling single-cell genomes and mini-metagenomes from chimeric MDA products. J Comput Biol. 2013;20:714–37. DOIPubMedGoogle Scholar
- Elnekave E, Hong SL, Lim S, Johnson TJ, Perez A, Alvarez J, et al. Comparing serotyping with whole-genome sequencing for subtyping of non-typhoidal Salmonella enterica: a large-scale analysis of 37 serotypes with a public health impact in the USA. Microb Genom. 2020;6:mgen000425. DOIGoogle Scholar
- Dos Santos AMP, Panzenhagen P, Ferrari RG, Conte-Junior CA. Large-scale genomic analysis reveals the pESI-like megaplasmid presence in Salmonella Agona, Muenchen, Schwarzengrund, and Senftenberg. Food Microbiol. 2022;108:
104112 .PubMedGoogle Scholar - Abramson JH. WINPEPI updated: computer programs for epidemiologists, and their teaching potential. Epidemiol Perspect Innov. 2011;8:1. DOIPubMedGoogle Scholar
- Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing. 33rd edition. Wayne (PA): The Institute; 2023.
- Pires SM, Vieira AR, Hald T, Cole D. Source attribution of human salmonellosis: an overview of methods and estimates. Foodborne Pathog Dis. 2014;11:667–76. DOIPubMedGoogle Scholar
- DE Knegt LV, Pires SM, Hald T. Attributing foodborne salmonellosis in humans to animal reservoirs in the European Union using a multi-country stochastic model. Epidemiol Infect. 2015;143:1175–86. DOIPubMedGoogle Scholar
- Perry J, Arnold K, Satuchne C, Koren O, Kenigswald G, Elnekave E. Accumulation of resistance genes in Salmonella Typhimurium transmitted between poultry and dairy farms increases the risk to public health. Appl Environ Microbiol. 2024;90:
e0229723 . DOIPubMedGoogle Scholar - Ferrari RG, Rosario DKA, Cunha-Neto A, Mano SB, Figueiredo EES, Conte-Junior CA. Worldwide epidemiology of Salmonella serovars in animal-based foods: a meta-analysis. Appl Environ Microbiol. 2019;85:e00591–19. DOIPubMedGoogle Scholar
- Danyluk MD, Jones TM, Abd SJ, Schlitt-Dittrich F, Jacobs M, Harris LJ. Prevalence and amounts of Salmonella found on raw California almonds. J Food Prot. 2007;70:820–7.PubMedGoogle Scholar
- Marshall KE, Cui Z, Gleason BL, Hartley C, Wise ME, Bruce BB, et al. An approach to describe Salmonella serotypes of concern for outbreaks: using burden and trajectory of outbreak-related illnesses associated with meat and poultry. J Food Prot. 2024;87:
100331 . DOIPubMedGoogle Scholar - Crabb HK, Allen JL, Devlin JM, Firestone SM, Wilks CR, Gilkerson JR. Salmonella spp. transmission in a vertically integrated poultry operation: Clustering and diversity analysis using phenotyping (serotyping, phage typing) and genotyping (MLVA). PLoS One. 2018;13:
e0201031 . DOIPubMedGoogle Scholar - Dunn LL, Sharma V, Chapin TK, Friedrich LM, Larson CC, Rodrigues C, et al. The prevalence and concentration of Salmonella enterica in poultry litter in the southern United States. PLoS One. 2022;17:
e0268231 . DOIPubMedGoogle Scholar - Wales AD, Carrique-Mas JJ, Rankin M, Bell B, Thind BB, Davies RH. Review of the carriage of zoonotic bacteria by arthropods, with special reference to Salmonella in mites, flies and litter beetles. Zoonoses Public Health. 2010;57:299–314.PubMedGoogle Scholar
- Jones FT. A review of practical Salmonella control measures in animal feed. J Appl Poult Res. 2011;20:102–13. DOIGoogle Scholar
- Obe T, Boltz T, Kogut M, Ricke SC, Brooks LA, Macklin K, et al. Controlling Salmonella: strategies for feed, the farm, and the processing plant. Poult Sci. 2023;102:
103086 . DOIPubMedGoogle Scholar - Maurer JJ, Cheng Y, Pedroso A, Thompson KK, Akter S, Kwan T, et al. Peeling back the many layers of competitive exclusion. Front Microbiol. 2024;15:
1342887 . DOIPubMedGoogle Scholar - Antunes P, Mourão J, Campos J, Peixe L. Salmonellosis: the role of poultry meat. Clin Microbiol Infect. 2016;22:110–21.PubMedGoogle Scholar
- Kariuki S, Gordon MA, Feasey N, Parry CM. Antimicrobial resistance and management of invasive Salmonella disease. Vaccine. 2015;33(Suppl 3):C21–9.PubMedGoogle Scholar
- Chang M-X, Zhang J-F, Sun Y-H, Li R-S, Lin X-L, Yang L, et al. Contribution of different mechanisms to ciprofloxacin resistance in Salmonella spp. Front Microbiol. 2021;12:
663731 . DOIPubMedGoogle Scholar - Zong G, Zhong C, Fu J, Zhang Y, Zhang P, Zhang W, et al. The carbapenem resistance gene blaOXA-23 is disseminated by a conjugative plasmid containing the novel transposon Tn6681 in Acinetobacter johnsonii M19. Antimicrob Resist Infect Control. 2020;9:182. DOIPubMedGoogle Scholar
- Bolzoni L, Scaltriti E, Bracchi C, Angelone S, Menozzi I, Taddei R, et al. Emergence of Salmonella enterica carrying bla OXA-181 carbapenemase gene, Italy, 2021 to 2024. Euro Surveill. 2025;30:
2500175 . DOIPubMedGoogle Scholar - Rebelo AR, Bortolaia V, Leekitcharoenphon P, Hansen DS, Nielsen HL, Ellermann-Eriksen S, et al. One day in Denmark: comparison of phenotypic and genotypic antimicrobial susceptibility testing in bacterial isolates from clinical settings. Front Microbiol. 2022;13:
804627 . DOIPubMedGoogle Scholar - Miller EA, Elnekave E, Flores-Figueroa C, Johnson A, Kearney A, Munoz-Aguayo J, et al. Emergence of a novel Salmonella enterica serotype reading clonal group is linked to its expansion in commercial turkey production, resulting in unanticipated human illness in North America. mSphere. 2020;5:e00056–20. DOIPubMedGoogle Scholar
- Abukhattab S, Hosch S, Abu-Rmeileh NME, Hasan S, Vonaesch P, Crump L, et al. Whole-genome sequencing for One Health surveillance of antimicrobial resistance in conflict zones: a case study of Salmonella spp. and Campylobacter spp. in the West Bank, Palestine. Appl Environ Microbiol. 2023;89:
e0065823 . DOIPubMedGoogle Scholar
Page created: September 08, 2025
Page updated: September 25, 2025
Page reviewed: September 25, 2025
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.