Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link

Volume 31, Number 10—October 2025

Research

Multidrug-Resistant pESI-Harboring Salmonella enterica Serovar Muenchen Sequence Type 82 in Poultry and Humans, Israel, 2020–2023

Janet Perry, Tal Rakler, Katya Arnold, Anat Wiseman, Cinthia Satuchne, Yaniv Pima, Galina Moiseeva, Ilana Maler, Eugenia Yakunin, Assaf Rokney, and Ehud ElnekaveComments to Author 
Author affiliation: Hebrew University of Jerusalem Robert H Smith Faculty of Agriculture Food and Environment, Rehovot, Israel (J. Perry, T. Rakler, K. Arnold, E. Elnekave); Egg and Poultry Board, Re'em Masmiya, Israel (A. Wiseman, C. Satuchne, Y. Pima); Kimron Veterinary Institute, Beit Dagan, Israel (G. Moiseeva, I. Maler); State of Israel Ministry of Health, Jerusalem, Israel (E. Yakunin, A. Rokney)

Main Article

Table 2

Phenotypic resistance and presence of acquired antimicrobial resistance genes known to confer resistance in Salmonella enterica serovar Muenchen in study of Salmonella Muenchen in poultry and humans, Israel, 2020–2023*

Antimicrobial class and drug MIC cutoff, µg/mL No. infections/no. tested (%) Relevant AMR genes and point mutations present in tested isolates (no.)
Tetracyclines
Tetracycline
16
15/15 (100)†
tetA (13), tetA + tetM (1)
Aminoglycosides
Streptomycin 32 14/15 (93.3) aadA1 (13), aadA1 + aadA2 (1)
Gentamicin
16
0/15 (0)
None
Phenicols
Chloramphenicol
32
6/15 (40.0)†
floR (4), floR + cmlA1 (1)
Penicillins
Ampicillin 32 7/15 (46.7)† blaTEM-1 (5), blaTEM-176 (1)
Amoxicillin/clavulanic acid, 2:1 ratio
32/16
0/15 (0)
None
Cephalosporins
Cefoxitin 32 0/15 (0) None
Ceftriaxone
4
0/15 (0)
None
Folate pathway antagonists
Sulfisoxazole 256 15/15† (100) sul1 (13), sul2 (1)
Trimethoprim/sulfamethoxazole
4/76
14/15† (93.3)
dfrA14 + sul1 (10), dfrA14 (1), dfrA12 + dfrA14 + sul2 (1)
Quinolones
Ciprofloxacin 0.12‡ 11/15 (73.3) qnrB19 (7§), qnrS1 (3), gyrA S83F (1), qnrS1 + gyrA S83F (1)
Nalidixic acid
32
4/15 (26.7)
qnrB19 (1), qnrS1 (1), gyrA S83F (1), qnrS1 + gyrA S83F (1)
Macrolides
Azithromycin
32
0/15 (0)
None
Carbapenems
Meropenem 4 0/15 (0) None

*AMR, antimicrobial resistance; +, genes found simultaneously on the same isolate. †>1 isolates exhibited phenotypic resistance without the identification of a relevant AMR gene ‡MIC cutoff for decreased susceptibility as a marker for emerging fluoroquinolone resistance (20). §One isolate (Br04) harbored the qnrB19 gene but was sensitive to ciprofloxacin (MIC = 0.03 µg/mL)

Main Article

References
  1. Kirk  MD, Pires  SM, Black  RE, Caipo  M, Crump  JA, Devleesschauwer  B, et al. World Health Organization estimates of the global and regional disease burden of 22 foodborne bacterial, protozoal, and viral diseases, 2010: a data synthesis. PLoS Med. 2015;12:e1001921. DOIPubMedGoogle Scholar
  2. Koutsoumanis  K, Allende  A, Alvarez-Ordóñez  A, Bolton  D, Bover-Cid  S, Chemaly  M, et al.; EFSA Panel on Biological Hazards (EFSA BIOHAZ Panel). Salmonella control in poultry flocks and its public health impact. EFSA J. 2019;17:e05596.PubMedGoogle Scholar
  3. Gast  RK, Porter  RE. Salmonella infections. In: Swayne DE Boulianne M, Logue CM, McDougald LR, Nair V, Suarez DL, et al., editors. Diseases of poultry. 14th ed. Hoboken (NJ, USA): Wiley-Blackwell; 2020. p. 719–53.
  4. Bassal  R, Davidovich-Cohen  M, Yakunin  E, Rokney  A, Ken-Dror  S, Strauss  M, et al. Trends in the epidemiology of non-typhoidal salmonellosis in Israel between 2010 and 2021. Int J Environ Res Public Health. 2023;20:5626. DOIPubMedGoogle Scholar
  5. European Centre for Disease Prevention and Control. Introduction to the annual epidemiological report. 2022 [cited 2024 Sep 20]. https://ecdc.europa.eu/en/annual-epidemiological-reports/methods
  6. Mikoleit  M, Van Duyne  MS, Halpin  J, McGlinchey  B, Fields  PI. Variable expression of O:61 in Salmonella group C2. J Clin Microbiol. 2012;50:40989. DOIPubMedGoogle Scholar
  7. Israel Ministry of Health. Jerusalem Central Laboratories annual reports [in Hebrew] [cited 2024 Oct 9]. https://www.gov.il/he/collectors/publications?officeId=104cb0f4-d65a-4692-b590-94af928c19c0&limit=10&UnitId=d46cf637-e0b1-4b56-ae75-4e58f67ca8bf.
  8. Cohen  E, Kriger  O, Amit  S, Davidovich  M, Rahav  G, Gal-Mor  O. The emergence of a multidrug resistant Salmonella Muenchen in Israel is associated with horizontal acquisition of the epidemic pESI plasmid. Clin Microbiol Infect. 2022;28:1499 e7–e14.
  9. Aviv  G, Tsyba  K, Steck  N, Salmon-Divon  M, Cornelius  A, Rahav  G, et al. A unique megaplasmid contributes to stress tolerance and pathogenicity of an emergent Salmonella enterica serovar Infantis strain. Environ Microbiol. 2014;16:97794. DOIPubMedGoogle Scholar
  10. Franco  A, Leekitcharoenphon  P, Feltrin  F, Alba  P, Cordaro  G, Iurescia  M, et al. Emergence of a clonal lineage of multidrug-resistant ESBL-producing Salmonella Infantis transmitted from broilers and broiler meat to humans in Italy between 2011 and 2014. PLoS One. 2015;10:e0144802. DOIPubMedGoogle Scholar
  11. Alvarez  DM, Barrón-Montenegro  R, Conejeros  J, Rivera  D, Undurraga  EA, Moreno-Switt  AI. A review of the global emergence of multidrug-resistant Salmonella enterica subsp. enterica Serovar Infantis. Int J Food Microbiol. 2023;403:110297.PubMedGoogle Scholar
  12. International Organization for Standardization. ISO 65791:2017 + A1:2020. Microbiology of the food chain—horizontal method for the detection, enumeration and serotyping of Salmonella. Part 1: detection of Salmonella spp. Geneva: The Organization; 2017 [cited 2024 Oct 2]. https://www.iso.org/standard/56712.html
  13. Arnold  K, Lim  S, Rakler  T, Rovira  A, Satuchne  C, Yechezkel  E, et al. Using genetic markers for detection and subtyping of the emerging Salmonella enterica subspecies enterica serotype Muenchen. Poult Sci. 2022;101:102181. DOIPubMedGoogle Scholar
  14. Wick  RR, Judd  LM, Gorrie  CL, Holt  KE. Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol. 2017;13:e1005595. DOIPubMedGoogle Scholar
  15. Kozlov  AM, Darriba  D, Flouri  T, Morel  B, Stamatakis  A. RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics. 2019;35:44535. DOIPubMedGoogle Scholar
  16. Nurk  S, Bankevich  A, Antipov  D, Gurevich  AA, Korobeynikov  A, Lapidus  A, et al. Assembling single-cell genomes and mini-metagenomes from chimeric MDA products. J Comput Biol. 2013;20:71437. DOIPubMedGoogle Scholar
  17. Elnekave  E, Hong  SL, Lim  S, Johnson  TJ, Perez  A, Alvarez  J, et al. Comparing serotyping with whole-genome sequencing for subtyping of non-typhoidal Salmonella enterica: a large-scale analysis of 37 serotypes with a public health impact in the USA. Microb Genom. 2020;6:mgen000425. DOIGoogle Scholar
  18. Dos Santos  AMP, Panzenhagen  P, Ferrari  RG, Conte-Junior  CA. Large-scale genomic analysis reveals the pESI-like megaplasmid presence in Salmonella Agona, Muenchen, Schwarzengrund, and Senftenberg. Food Microbiol. 2022;108:104112.PubMedGoogle Scholar
  19. Abramson  JH. WINPEPI updated: computer programs for epidemiologists, and their teaching potential. Epidemiol Perspect Innov. 2011;8:1. DOIPubMedGoogle Scholar
  20. Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing. 33rd edition. Wayne (PA): The Institute; 2023.
  21. Pires  SM, Vieira  AR, Hald  T, Cole  D. Source attribution of human salmonellosis: an overview of methods and estimates. Foodborne Pathog Dis. 2014;11:66776. DOIPubMedGoogle Scholar
  22. DE Knegt  LV, Pires  SM, Hald  T. Attributing foodborne salmonellosis in humans to animal reservoirs in the European Union using a multi-country stochastic model. Epidemiol Infect. 2015;143:117586. DOIPubMedGoogle Scholar
  23. Perry  J, Arnold  K, Satuchne  C, Koren  O, Kenigswald  G, Elnekave  E. Accumulation of resistance genes in Salmonella Typhimurium transmitted between poultry and dairy farms increases the risk to public health. Appl Environ Microbiol. 2024;90:e0229723. DOIPubMedGoogle Scholar
  24. Ferrari  RG, Rosario  DKA, Cunha-Neto  A, Mano  SB, Figueiredo  EES, Conte-Junior  CA. Worldwide epidemiology of Salmonella serovars in animal-based foods: a meta-analysis. Appl Environ Microbiol. 2019;85:e0059119. DOIPubMedGoogle Scholar
  25. Danyluk  MD, Jones  TM, Abd  SJ, Schlitt-Dittrich  F, Jacobs  M, Harris  LJ. Prevalence and amounts of Salmonella found on raw California almonds. J Food Prot. 2007;70:8207.PubMedGoogle Scholar
  26. Marshall  KE, Cui  Z, Gleason  BL, Hartley  C, Wise  ME, Bruce  BB, et al. An approach to describe Salmonella serotypes of concern for outbreaks: using burden and trajectory of outbreak-related illnesses associated with meat and poultry. J Food Prot. 2024;87:100331. DOIPubMedGoogle Scholar
  27. Crabb  HK, Allen  JL, Devlin  JM, Firestone  SM, Wilks  CR, Gilkerson  JR. Salmonella spp. transmission in a vertically integrated poultry operation: Clustering and diversity analysis using phenotyping (serotyping, phage typing) and genotyping (MLVA). PLoS One. 2018;13:e0201031. DOIPubMedGoogle Scholar
  28. Dunn  LL, Sharma  V, Chapin  TK, Friedrich  LM, Larson  CC, Rodrigues  C, et al. The prevalence and concentration of Salmonella enterica in poultry litter in the southern United States. PLoS One. 2022;17:e0268231. DOIPubMedGoogle Scholar
  29. Wales  AD, Carrique-Mas  JJ, Rankin  M, Bell  B, Thind  BB, Davies  RH. Review of the carriage of zoonotic bacteria by arthropods, with special reference to Salmonella in mites, flies and litter beetles. Zoonoses Public Health. 2010;57:299314.PubMedGoogle Scholar
  30. Jones  FT. A review of practical Salmonella control measures in animal feed. J Appl Poult Res. 2011;20:10213. DOIGoogle Scholar
  31. Obe  T, Boltz  T, Kogut  M, Ricke  SC, Brooks  LA, Macklin  K, et al. Controlling Salmonella: strategies for feed, the farm, and the processing plant. Poult Sci. 2023;102:103086. DOIPubMedGoogle Scholar
  32. Maurer  JJ, Cheng  Y, Pedroso  A, Thompson  KK, Akter  S, Kwan  T, et al. Peeling back the many layers of competitive exclusion. Front Microbiol. 2024;15:1342887. DOIPubMedGoogle Scholar
  33. Antunes  P, Mourão  J, Campos  J, Peixe  L. Salmonellosis: the role of poultry meat. Clin Microbiol Infect. 2016;22:11021.PubMedGoogle Scholar
  34. Kariuki  S, Gordon  MA, Feasey  N, Parry  CM. Antimicrobial resistance and management of invasive Salmonella disease. Vaccine. 2015;33(Suppl 3):C219.PubMedGoogle Scholar
  35. Chang  M-X, Zhang  J-F, Sun  Y-H, Li  R-S, Lin  X-L, Yang  L, et al. Contribution of different mechanisms to ciprofloxacin resistance in Salmonella spp. Front Microbiol. 2021;12:663731. DOIPubMedGoogle Scholar
  36. Zong  G, Zhong  C, Fu  J, Zhang  Y, Zhang  P, Zhang  W, et al. The carbapenem resistance gene blaOXA-23 is disseminated by a conjugative plasmid containing the novel transposon Tn6681 in Acinetobacter johnsonii M19. Antimicrob Resist Infect Control. 2020;9:182. DOIPubMedGoogle Scholar
  37. Bolzoni  L, Scaltriti  E, Bracchi  C, Angelone  S, Menozzi  I, Taddei  R, et al. Emergence of Salmonella enterica carrying bla OXA-181 carbapenemase gene, Italy, 2021 to 2024. Euro Surveill. 2025;30:2500175. DOIPubMedGoogle Scholar
  38. Rebelo  AR, Bortolaia  V, Leekitcharoenphon  P, Hansen  DS, Nielsen  HL, Ellermann-Eriksen  S, et al. One day in Denmark: comparison of phenotypic and genotypic antimicrobial susceptibility testing in bacterial isolates from clinical settings. Front Microbiol. 2022;13:804627. DOIPubMedGoogle Scholar
  39. Miller  EA, Elnekave  E, Flores-Figueroa  C, Johnson  A, Kearney  A, Munoz-Aguayo  J, et al. Emergence of a novel Salmonella enterica serotype reading clonal group is linked to its expansion in commercial turkey production, resulting in unanticipated human illness in North America. mSphere. 2020;5:e0005620. DOIPubMedGoogle Scholar
  40. Abukhattab  S, Hosch  S, Abu-Rmeileh  NME, Hasan  S, Vonaesch  P, Crump  L, et al. Whole-genome sequencing for One Health surveillance of antimicrobial resistance in conflict zones: a case study of Salmonella spp. and Campylobacter spp. in the West Bank, Palestine. Appl Environ Microbiol. 2023;89:e0065823. DOIPubMedGoogle Scholar

Main Article

Page created: September 08, 2025
Page updated: September 25, 2025
Page reviewed: September 25, 2025
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external