Disclaimer: Early release articles are not considered as final versions. Any changes will be reflected in the online version in the month the article is officially released.
Volume 31, Number 11—November 2025
Research
Isolation and Characterization of Rickettsia finnyi, Novel Pathogenic Spotted Fever Group Rickettsia in Dogs, United States
Table 2
Date, location, signalment, and vectorborne disease diagnostic results from dogs naturally infected with Rickettsia finnyi sp. nov. strain 2024-CO-Wats in study of isolation and characterization of novel pathogenic spotted fever group Rickettsia in dogs, United States*
| Dog no. | Date | State | Breed | Age, y/sex | Rickettsia 23S-5S ITS PCR (Cq, Mt)† | R. rickettsii IFA titer | Vectorborne disease co-infections, test type (titer) |
|---|---|---|---|---|---|---|---|
| 1‡ |
2018 May 17 |
TN |
MB |
10/MC |
37.7, 77.5° |
1:512 |
None |
| 2‡ | 2019 May 8 | IL | BT | 9/MC | 39.1, 78° | 1:256 | None |
| 2019 May 15§ |
ND |
1:8,192 |
|||||
| 3‡ | 2019 Aug 28 | OK | MB | 9/MC | 33.8, 77.5° | 1:1,024 | None |
| 2019 Sep 10§ |
ND |
1:8,192 |
|||||
| 4 | 2020 May 3 | OK | V | 8/MC | 38.1, 78° | 1:256 | Ehrlichia SNAP4DxPlus |
| 2020 May 28§ |
ND |
1:512 |
|||||
| 5 |
2020 May 7 |
TX |
MB |
7/MC |
34.5, 77° |
1:512 |
Mycoplasma hematoparvum PCR+ |
| 6 | 2020 Jul 16 | NC | KSD | 2/FS | 35.4, 77.5° | <1:32 | Bartonella henselae IFA (1:64) |
| 2020 Aug 19§ |
ND |
1:1,024 |
|||||
| 7 |
2020 Aug 1 |
CO |
ESS |
12/FS |
33.8, 77.5° |
<1:32 |
Babesia sp. (Coco) PCR+ |
| 8 |
2022 May 23 |
KS |
LR |
4/MC |
37.7, 77.5° |
1:265 |
Ehrlichia SNAP4DxPlus |
| 9 | 2022 May 24 | MO | LR | 6/M | 38.3, 77.5° | 1:2,048 | None |
| 2022 Jun 17§ |
ND |
1:8,192 |
|||||
| 10 |
2023 May 5 |
KS |
ASP |
3/FS |
33.9, 77.5° |
<1:32 |
None |
| 11 |
2023 May 5 |
KS |
MB |
13/MC |
36.5, 77.5° |
1:4,096 |
Anaplasma SNAP4DxPlus, B. canis IFA (1:256), |
| 12 | 2023 Sep 13 | AL | MB | 8/MC | 36.6, 78° | 1:512 | None |
| 2023 Oct 2§ |
ND |
1:4,096 |
|||||
| 13 |
2023 Sep 18 |
MO |
LR |
8/M |
33.1, 77.5° |
1:256 |
None |
| 14 | 2023 Oct 10 | IA | GR | 5/FS | 37.4, 78° | 1:64 | Ehrlichia SNAP4DxPlus, E. canis IFA (1:64) |
| 2023 Oct 19§ |
ND |
1:4,096 |
|||||
| 15¶ |
2024 Apr 25 |
IN |
MB |
9/M |
28.8, 77° |
1:1,024 |
None |
| 16 |
2024 Oct 23 |
LA |
TP |
4/M |
36.5, 77.5° |
1:2,048 |
None |
| 17 | 2025 May 14 | LA | MB | 8/MC | 36.4, 77.5° | 1:4,096 | None |
*ASP, American Staffordshire terrier; BT, Boston terrier; Cq, quantification cycle; ESS, English springer spaniel; FS, female spayed; GR, golden retriever; IFAT, indirect immunofluorescent antibody; ITS, internal transcribed spacer; KSD, Kangal shepherd dog; LR, labrador retriever; MC, male castrated; Mt, melting temperature; MB, mixed breed; ND, not detected; TP, toy poodle; VBD, vectorborne disease; V, Vizsla. †Rickettsia 23S-5S ITS amplicons were Sanger sequenced and 100% identical to Rickettsia sp. strain 2019-CO-FNY. ‡Dogs described previously (1). §Post doxycycline treatment. ¶Sample used for culturing.
References
- Wilson JM, Breitschwerdt EB, Juhasz NB, Marr HS, de Brito Galvão JF, Pratt CL, et al. Novel Rickettsia species infecting dogs, United States. Emerg Infect Dis. 2020;26:3011–5. DOIPubMedGoogle Scholar
- Yancey CB, Hegarty BC, Qurollo BA, Levy MG, Birkenheuer AJ, Weber DJ, et al. Regional seroreactivity and vector-borne disease co-exposures in dogs in the United States from 2004-2010: utility of canine surveillance. Vector Borne Zoonotic Dis. 2014;14:724–32.PubMedGoogle Scholar
- Centers for Disease Control and Prevention. Data and statistics on spotted fever rickettsiosis [cited 2025 Mar 25]. https://www.cdc.gov/rocky-mountain-spotted-fever/data-research/facts-stats/index.html
- Paddock CD, Karpathy SE, Henry A, Ryle L, Hecht JA, Hacker JK, et al. Rickettsia rickettsii subsp californica subsp nov, the Etiologic Agent of Pacific Coast Tick Fever. J Infect Dis. 2025;231:849–58.PubMedGoogle Scholar
- Rodino KG. Rickettsioses in the United States. Clin Microbiol Newsl. 2019;41:113–9. DOIGoogle Scholar
- Nicholson WL, Allen KE, McQuiston JH, Breitschwerdt EB, Little SE. The increasing recognition of rickettsial pathogens in dogs and people. Trends Parasitol. 2010;26:205–12. DOIPubMedGoogle Scholar
- Barrett A, Little SE, Shaw E. “Rickettsia amblyommii” and R. montanensis infection in dogs following natural exposure to ticks. Vector Borne Zoonotic Dis. 2014;14:20–5.PubMedGoogle Scholar
- Grasperge BJ, Wolfson W, Macaluso KR. Rickettsia parkeri infection in domestic dogs, Southern Louisiana, USA, 2011. Emerg Infect Dis. 2012;18:995–7. DOIPubMedGoogle Scholar
- Levin ML, Killmaster LF, Zemtsova GE, Ritter JM, Langham G. Clinical presentation, convalescence, and relapse of rocky mountain spotted fever in dogs experimentally infected via tick bite. PLoS One. 2014;9:
e115105 . DOIPubMedGoogle Scholar - Gasser AM, Birkenheuer AJ, Breitschwerdt EB. Canine Rocky Mountain Spotted fever: a retrospective study of 30 cases. J Am Anim Hosp Assoc. 2001;37:41–8. DOIPubMedGoogle Scholar
- Cerreta AJ, Yang TS, Ramsay EC, Birkenheuer AJ, Rahoi D, Qurollo B, et al. Detection of vector-borne infections in lions and tigers at two zoos in Tennessee and Oklahoma. J Zoo Wildl Med. 2022;53:50–9. DOIPubMedGoogle Scholar
- Ernst E, Qurollo B, Olech C, Breitschwerdt EB. Bartonella rochalimae, a newly recognized pathogen in dogs. J Vet Intern Med. 2020;34:1447–53. DOIPubMedGoogle Scholar
- Maggi RG, Birkenheuer AJ, Hegarty BC, Bradley JM, Levy MG, Breitschwerdt EB. Comparison of serological and molecular panels for diagnosis of vector-borne diseases in dogs. Parasit Vectors. 2014;7:127. DOIPubMedGoogle Scholar
- Hegarty BC, Qurollo BA, Thomas B, Park K, Chandrashekar R, Beall MJ, et al. Serological and molecular analysis of feline vector-borne anaplasmosis and ehrlichiosis using species-specific peptides and PCR. Parasit Vectors. 2015;8:320. DOIPubMedGoogle Scholar
- Qurollo BA, Archer NR, Schreeg ME, Marr HS, Birkenheuer AJ, Haney KN, et al. Improved molecular detection of Babesia infections in animals using a novel quantitative real-time PCR diagnostic assay targeting mitochondrial DNA. Parasit Vectors. 2017;10:128. DOIPubMedGoogle Scholar
- Beall MJ, Mainville CA, Arguello-Marin A, Clark G, Lemieux C, Saucier J, et al. An improved point-of-care ELISA for the diagnosis of anaplasmosis and ehrlichiosis during the acute phase of tick-borne infections in dogs. Top Companion Anim Med. 2022;51:
100735 . DOIPubMedGoogle Scholar - Birkenheuer AJ, Levy MG, Breitschwerdt EB. Development and evaluation of a seminested PCR for detection and differentiation of Babesia gibsoni (Asian genotype) and B. canis DNA in canine blood samples. J Clin Microbiol. 2003;41:4172–7. DOIPubMedGoogle Scholar
- Condit ME, Jones E, Biggerstaff BJ, Kato CY. Procedure for spotted fever group Rickettsia isolation from limited clinical blood specimens. PLoS Negl Trop Dis. 2022;16:
e0010781 . DOIPubMedGoogle Scholar - Ammerman NC, Beier-Sexton M, Azad AF. Laboratory maintenance of Rickettsia rickettsii. Curr Protoc Microbiol. 2008;Chapter 3:Unit 3A.5.
- De Coster W, Rademakers R. NanoPack2: population-scale evaluation of long-read sequencing data. Bioinformatics. 2023;39:btad311. DOIGoogle Scholar
- Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics. 2018;34:3094–100. DOIPubMedGoogle Scholar
- Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V, Pollard MO, et al. Twelve years of SAMtools and BCFtools. Gigascience. 2021;10:giab008. DOIGoogle Scholar
- Kolmogorov M, Yuan J, Lin Y, Pevzner PA. Assembly of long, error-prone reads using repeat graphs. Nat Biotechnol. 2019;37:540–6. DOIPubMedGoogle Scholar
- Mikheenko A, Saveliev V, Hirsch P, Gurevich A. WebQUAST: online evaluation of genome assemblies. Nucleic Acids Res. 2023;51(W1):W601–6. DOIPubMedGoogle Scholar
- Aytan-Aktug D, Grigorjev V, Szarvas J, Clausen PTLC, Munk P, Nguyen M, et al. SourceFinder: a machine-learning-based tool for identification of chromosomal, plasmid, and bacteriophage sequences from assemblies. Microbiol Spectr. 2022;10:
e0264122 . DOIPubMedGoogle Scholar - Meier-Kolthoff JP, Carbasse JS, Peinado-Olarte RL, Göker M. TYGS and LPSN: a database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Res. 2022;50(D1):D801–7. DOIPubMedGoogle Scholar
- Lee I, Ouk Kim Y, Park S-C, Chun J. OrthoANI: An improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol. 2016;66:1100–3. DOIPubMedGoogle Scholar
- Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30:2068–9. DOIPubMedGoogle Scholar
- Klemm P, Stadler PF, Lechner M. Proteinortho6: pseudo-reciprocal best alignment heuristic for graph-based detection of (co-)orthologs. Front Bioinform. 2023;3:
1322477 . DOIPubMedGoogle Scholar - Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30:772–80. DOIPubMedGoogle Scholar
- Kozlov AM, Darriba D, Flouri T, Morel B, Stamatakis A. RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics. 2019;35:4453–5. DOIPubMedGoogle Scholar
- Diop A, El Karkouri K, Raoult D, Fournier P-E. Genome sequence-based criteria for demarcation and definition of species in the genus Rickettsia. Int J Syst Evol Microbiol. 2020;70:1738–50. DOIPubMedGoogle Scholar
- Teysseire N, Boudier JA, Raoult D. Rickettsia conorii entry into Vero cells. Infect Immun. 1995;63:366–74. DOIPubMedGoogle Scholar
- Curto P, Santa C, Allen P, Manadas B, Simões I, Martinez JJ. A Pathogen and a non-pathogen spotted fever group Rickettsia trigger differential proteome signatures in macrophages. Front Cell Infect Microbiol. 2019;9:43. DOIPubMedGoogle Scholar
- Kristof MN, Allen PE, Yutzy LD, Thibodaux B, Paddock CD, Martinez JJ. Significant growth by Rickettsia species within human macrophage-like cells is a phenotype correlated with the ability to cause disease in mammals. Pathogens. 2021;10:228. DOIPubMedGoogle Scholar
- Curto P, Simões I, Riley SP, Martinez JJ. Differences in intracellular fate of two spotted fever group Rickettsia in macrophage-like cells. Front Cell Infect Microbiol. 2016;6:80. DOIPubMedGoogle Scholar
- Voss OH, Gaytan H, Ullah S, Sadik M, Moin I, Rahman MS, et al. Autophagy facilitates intracellular survival of pathogenic rickettsiae in macrophages via evasion of autophagosomal maturation and reduction of microbicidal pro-inflammatory IL-1 cytokine responses. Microbiol Spectr. 2023;11:
e0279123 . DOIPubMedGoogle Scholar - Påhlson C, Lu X, Ott M, Nilsson K. Characteristics of in vitro infection of human monocytes, by Rickettsia helvetica. Microbes Infect. 2021;23:
104776 . DOIPubMedGoogle Scholar - Kidd L, Hegarty B, Sexton D, Breitschwerdt E. Molecular characterization of Rickettsia rickettsii infecting dogs and people in North Carolina. Ann N Y Acad Sci. 2006;1078:400–9. DOIPubMedGoogle Scholar
- Foley J, Backus L, López-Pérez AM. Focus on brown dog tick–transmitted Rocky Mountain spotted fever in dogs and people: shared threats and solutions [cited 2025 Apr 10]. https://avmajournals.avma.org/view/journals/javma/263/3/javma.24.11.0756.xml
- Probert WS, Haw MP, Nichol AC, Glaser CA, Park SY, Campbell LE, et al. Newly recognized spotted fever group Rickettsia as cause of severe Rocky Mountain spotted fever-like illness, northern California, USA. Emerg Infect Dis. 2024;30:1344–51. DOIPubMedGoogle Scholar
- Noden BH, Henriquez BE, Roselli MA, Loss SR. Use of an exclusion assay to detect novel rickettsiae in field collected Amblyomma americanum. Ticks Tick Borne Dis. 2022;13:
101959 . DOIPubMedGoogle Scholar - Bhosale CR, Wilson KN, Ledger KJ, White ZS, Dorleans R, De Jesus CE, et al. Ticks and tick-borne pathogens in recreational greenspaces in north central Florida, USA. Microorganisms. 2023;11:756. DOIPubMedGoogle Scholar
- Noden BH, Roselli MA, Loss SR. Effect of urbanization on presence, abundance, and coinfection of bacteria and protozoa in ticks in the US Great Plains. J Med Entomol. 2022;59:957–68. DOIPubMedGoogle Scholar
1These authors contributed equally to this article.