Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link

Disclaimer: Early release articles are not considered as final versions. Any changes will be reflected in the online version in the month the article is officially released.

Volume 31, Number 11—November 2025

Research

Isolation and Characterization of Rickettsia finnyi, Novel Pathogenic Spotted Fever Group Rickettsia in Dogs, United States

Praveen K. Korla1, Michael G. Karounos1, Sarah B. Clarke, Cynthia Robveille, James M. Wilson, Edward B. Breitschwerdt, Adam J. Birkenheuer, and Barbara A. QurolloComments to Author 
Author affiliation: North Carolina State University College of Veterinary Medicine, Raleigh, North Carolina, USA

Main Article

Table 2

Date, location, signalment, and vectorborne disease diagnostic results from dogs naturally infected with Rickettsia finnyi sp. nov. strain 2024-CO-Wats in study of isolation and characterization of novel pathogenic spotted fever group Rickettsia in dogs, United States*

Dog no. Date State Breed Age, y/sex Rickettsia 23S-5S ITS PCR (Cq, Mt)† R. rickettsii IFA titer Vectorborne disease co-infections, test type (titer)
1‡
2018 May 17
TN
MB
10/MC
37.7, 77.5°
1:512
None
2‡ 2019 May 8 IL BT 9/MC 39.1, 78° 1:256 None

2019 May 15§



ND
1:8,192

3‡ 2019 Aug 28 OK MB 9/MC 33.8, 77.5° 1:1,024 None

2019 Sep 10§



ND
1:8,192

4 2020 May 3 OK V 8/MC 38.1, 78° 1:256 Ehrlichia SNAP4DxPlus

2020 May 28§



ND
1:512

5
2020 May 7
TX
MB
7/MC
34.5, 77°
1:512
Mycoplasma hematoparvum PCR+
6 2020 Jul 16 NC KSD 2/FS 35.4, 77.5° <1:32 Bartonella henselae IFA (1:64)

2020 Aug 19§



ND
1:1,024

7
2020 Aug 1
CO
ESS
12/FS
33.8, 77.5°
<1:32
Babesia sp. (Coco) PCR+
8
2022 May 23
KS
LR
4/MC
37.7, 77.5°
1:265
Ehrlichia SNAP4DxPlus
9 2022 May 24 MO LR 6/M 38.3, 77.5° 1:2,048 None

2022 Jun 17§



ND
1:8,192

10
2023 May 5
KS
ASP
3/FS
33.9, 77.5°
<1:32
None
11
2023 May 5
KS
MB
13/MC
36.5, 77.5°
1:4,096
Anaplasma SNAP4DxPlus, B. canis IFA (1:256),
12 2023 Sep 13 AL MB 8/MC 36.6, 78° 1:512 None

2023 Oct 2§



ND
1:4,096

13
2023 Sep 18
MO
LR
8/M
33.1, 77.5°
1:256
None
14 2023 Oct 10 IA GR 5/FS 37.4, 78° 1:64 Ehrlichia SNAP4DxPlus, E. canis IFA (1:64)

2023 Oct 19§



ND
1:4,096

15¶
2024 Apr 25
IN
MB
9/M
28.8, 77°
1:1,024
None
16
2024 Oct 23
LA
TP
4/M
36.5, 77.5°
1:2,048
None
17 2025 May 14 LA MB 8/MC 36.4, 77.5° 1:4,096 None

*ASP, American Staffordshire terrier; BT, Boston terrier; Cq, quantification cycle; ESS, English springer spaniel; FS, female spayed; GR, golden retriever; IFAT, indirect immunofluorescent antibody; ITS, internal transcribed spacer; KSD, Kangal shepherd dog; LR, labrador retriever; MC, male castrated; Mt, melting temperature; MB, mixed breed; ND, not detected; TP, toy poodle; VBD, vectorborne disease; V, Vizsla.
†Rickettsia 23S-5S ITS amplicons were Sanger sequenced and 100% identical to Rickettsia sp. strain 2019-CO-FNY.
‡Dogs described previously (1).
§Post doxycycline treatment.
¶Sample used for culturing.

Main Article

References
  1. Wilson  JM, Breitschwerdt  EB, Juhasz  NB, Marr  HS, de Brito Galvão  JF, Pratt  CL, et al. Novel Rickettsia species infecting dogs, United States. Emerg Infect Dis. 2020;26:30115. DOIPubMedGoogle Scholar
  2. Yancey  CB, Hegarty  BC, Qurollo  BA, Levy  MG, Birkenheuer  AJ, Weber  DJ, et al. Regional seroreactivity and vector-borne disease co-exposures in dogs in the United States from 2004-2010: utility of canine surveillance. Vector Borne Zoonotic Dis. 2014;14:72432.PubMedGoogle Scholar
  3. Centers for Disease Control and Prevention. Data and statistics on spotted fever rickettsiosis [cited 2025 Mar 25]. https://www.cdc.gov/rocky-mountain-spotted-fever/data-research/facts-stats/index.html
  4. Paddock  CD, Karpathy  SE, Henry  A, Ryle  L, Hecht  JA, Hacker  JK, et al. Rickettsia rickettsii subsp californica subsp nov, the Etiologic Agent of Pacific Coast Tick Fever. J Infect Dis. 2025;231:84958.PubMedGoogle Scholar
  5. Rodino  KG. Rickettsioses in the United States. Clin Microbiol Newsl. 2019;41:1139. DOIGoogle Scholar
  6. Nicholson  WL, Allen  KE, McQuiston  JH, Breitschwerdt  EB, Little  SE. The increasing recognition of rickettsial pathogens in dogs and people. Trends Parasitol. 2010;26:20512. DOIPubMedGoogle Scholar
  7. Barrett  A, Little  SE, Shaw  E. “Rickettsia amblyommii” and R. montanensis infection in dogs following natural exposure to ticks. Vector Borne Zoonotic Dis. 2014;14:205.PubMedGoogle Scholar
  8. Grasperge  BJ, Wolfson  W, Macaluso  KR. Rickettsia parkeri infection in domestic dogs, Southern Louisiana, USA, 2011. Emerg Infect Dis. 2012;18:9957. DOIPubMedGoogle Scholar
  9. Levin  ML, Killmaster  LF, Zemtsova  GE, Ritter  JM, Langham  G. Clinical presentation, convalescence, and relapse of rocky mountain spotted fever in dogs experimentally infected via tick bite. PLoS One. 2014;9:e115105. DOIPubMedGoogle Scholar
  10. Gasser  AM, Birkenheuer  AJ, Breitschwerdt  EB. Canine Rocky Mountain Spotted fever: a retrospective study of 30 cases. J Am Anim Hosp Assoc. 2001;37:418. DOIPubMedGoogle Scholar
  11. Cerreta  AJ, Yang  TS, Ramsay  EC, Birkenheuer  AJ, Rahoi  D, Qurollo  B, et al. Detection of vector-borne infections in lions and tigers at two zoos in Tennessee and Oklahoma. J Zoo Wildl Med. 2022;53:509. DOIPubMedGoogle Scholar
  12. Ernst  E, Qurollo  B, Olech  C, Breitschwerdt  EB. Bartonella rochalimae, a newly recognized pathogen in dogs. J Vet Intern Med. 2020;34:144753. DOIPubMedGoogle Scholar
  13. Maggi  RG, Birkenheuer  AJ, Hegarty  BC, Bradley  JM, Levy  MG, Breitschwerdt  EB. Comparison of serological and molecular panels for diagnosis of vector-borne diseases in dogs. Parasit Vectors. 2014;7:127. DOIPubMedGoogle Scholar
  14. Hegarty  BC, Qurollo  BA, Thomas  B, Park  K, Chandrashekar  R, Beall  MJ, et al. Serological and molecular analysis of feline vector-borne anaplasmosis and ehrlichiosis using species-specific peptides and PCR. Parasit Vectors. 2015;8:320. DOIPubMedGoogle Scholar
  15. Qurollo  BA, Archer  NR, Schreeg  ME, Marr  HS, Birkenheuer  AJ, Haney  KN, et al. Improved molecular detection of Babesia infections in animals using a novel quantitative real-time PCR diagnostic assay targeting mitochondrial DNA. Parasit Vectors. 2017;10:128. DOIPubMedGoogle Scholar
  16. Beall  MJ, Mainville  CA, Arguello-Marin  A, Clark  G, Lemieux  C, Saucier  J, et al. An improved point-of-care ELISA for the diagnosis of anaplasmosis and ehrlichiosis during the acute phase of tick-borne infections in dogs. Top Companion Anim Med. 2022;51:100735. DOIPubMedGoogle Scholar
  17. Birkenheuer  AJ, Levy  MG, Breitschwerdt  EB. Development and evaluation of a seminested PCR for detection and differentiation of Babesia gibsoni (Asian genotype) and B. canis DNA in canine blood samples. J Clin Microbiol. 2003;41:41727. DOIPubMedGoogle Scholar
  18. Condit  ME, Jones  E, Biggerstaff  BJ, Kato  CY. Procedure for spotted fever group Rickettsia isolation from limited clinical blood specimens. PLoS Negl Trop Dis. 2022;16:e0010781. DOIPubMedGoogle Scholar
  19. Ammerman  NC, Beier-Sexton  M, Azad  AF. Laboratory maintenance of Rickettsia rickettsii. Curr Protoc Microbiol. 2008;Chapter 3:Unit 3A.5.
  20. De Coster  W, Rademakers  R. NanoPack2: population-scale evaluation of long-read sequencing data. Bioinformatics. 2023;39:btad311. DOIGoogle Scholar
  21. Li  H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics. 2018;34:3094100. DOIPubMedGoogle Scholar
  22. Danecek  P, Bonfield  JK, Liddle  J, Marshall  J, Ohan  V, Pollard  MO, et al. Twelve years of SAMtools and BCFtools. Gigascience. 2021;10:giab008. DOIGoogle Scholar
  23. Kolmogorov  M, Yuan  J, Lin  Y, Pevzner  PA. Assembly of long, error-prone reads using repeat graphs. Nat Biotechnol. 2019;37:5406. DOIPubMedGoogle Scholar
  24. Mikheenko  A, Saveliev  V, Hirsch  P, Gurevich  A. WebQUAST: online evaluation of genome assemblies. Nucleic Acids Res. 2023;51(W1):W6016. DOIPubMedGoogle Scholar
  25. Aytan-Aktug  D, Grigorjev  V, Szarvas  J, Clausen  PTLC, Munk  P, Nguyen  M, et al. SourceFinder: a machine-learning-based tool for identification of chromosomal, plasmid, and bacteriophage sequences from assemblies. Microbiol Spectr. 2022;10:e0264122. DOIPubMedGoogle Scholar
  26. Meier-Kolthoff  JP, Carbasse  JS, Peinado-Olarte  RL, Göker  M. TYGS and LPSN: a database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Res. 2022;50(D1):D8017. DOIPubMedGoogle Scholar
  27. Lee  I, Ouk Kim  Y, Park  S-C, Chun  J. OrthoANI: An improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol. 2016;66:11003. DOIPubMedGoogle Scholar
  28. Seemann  T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30:20689. DOIPubMedGoogle Scholar
  29. Klemm  P, Stadler  PF, Lechner  M. Proteinortho6: pseudo-reciprocal best alignment heuristic for graph-based detection of (co-)orthologs. Front Bioinform. 2023;3:1322477. DOIPubMedGoogle Scholar
  30. Katoh  K, Standley  DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30:77280. DOIPubMedGoogle Scholar
  31. Kozlov  AM, Darriba  D, Flouri  T, Morel  B, Stamatakis  A. RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics. 2019;35:44535. DOIPubMedGoogle Scholar
  32. Diop  A, El Karkouri  K, Raoult  D, Fournier  P-E. Genome sequence-based criteria for demarcation and definition of species in the genus Rickettsia. Int J Syst Evol Microbiol. 2020;70:173850. DOIPubMedGoogle Scholar
  33. Teysseire  N, Boudier  JA, Raoult  D. Rickettsia conorii entry into Vero cells. Infect Immun. 1995;63:36674. DOIPubMedGoogle Scholar
  34. Curto  P, Santa  C, Allen  P, Manadas  B, Simões  I, Martinez  JJ. A Pathogen and a non-pathogen spotted fever group Rickettsia trigger differential proteome signatures in macrophages. Front Cell Infect Microbiol. 2019;9:43. DOIPubMedGoogle Scholar
  35. Kristof  MN, Allen  PE, Yutzy  LD, Thibodaux  B, Paddock  CD, Martinez  JJ. Significant growth by Rickettsia species within human macrophage-like cells is a phenotype correlated with the ability to cause disease in mammals. Pathogens. 2021;10:228. DOIPubMedGoogle Scholar
  36. Curto  P, Simões  I, Riley  SP, Martinez  JJ. Differences in intracellular fate of two spotted fever group Rickettsia in macrophage-like cells. Front Cell Infect Microbiol. 2016;6:80. DOIPubMedGoogle Scholar
  37. Voss  OH, Gaytan  H, Ullah  S, Sadik  M, Moin  I, Rahman  MS, et al. Autophagy facilitates intracellular survival of pathogenic rickettsiae in macrophages via evasion of autophagosomal maturation and reduction of microbicidal pro-inflammatory IL-1 cytokine responses. Microbiol Spectr. 2023;11:e0279123. DOIPubMedGoogle Scholar
  38. Påhlson  C, Lu  X, Ott  M, Nilsson  K. Characteristics of in vitro infection of human monocytes, by Rickettsia helvetica. Microbes Infect. 2021;23:104776. DOIPubMedGoogle Scholar
  39. Kidd  L, Hegarty  B, Sexton  D, Breitschwerdt  E. Molecular characterization of Rickettsia rickettsii infecting dogs and people in North Carolina. Ann N Y Acad Sci. 2006;1078:4009. DOIPubMedGoogle Scholar
  40. Foley  J, Backus  L, López-Pérez  AM. Focus on brown dog tick–transmitted Rocky Mountain spotted fever in dogs and people: shared threats and solutions [cited 2025 Apr 10]. https://avmajournals.avma.org/view/journals/javma/263/3/javma.24.11.0756.xml
  41. Probert  WS, Haw  MP, Nichol  AC, Glaser  CA, Park  SY, Campbell  LE, et al. Newly recognized spotted fever group Rickettsia as cause of severe Rocky Mountain spotted fever-like illness, northern California, USA. Emerg Infect Dis. 2024;30:134451. DOIPubMedGoogle Scholar
  42. Noden  BH, Henriquez  BE, Roselli  MA, Loss  SR. Use of an exclusion assay to detect novel rickettsiae in field collected Amblyomma americanum. Ticks Tick Borne Dis. 2022;13:101959. DOIPubMedGoogle Scholar
  43. Bhosale  CR, Wilson  KN, Ledger  KJ, White  ZS, Dorleans  R, De Jesus  CE, et al. Ticks and tick-borne pathogens in recreational greenspaces in north central Florida, USA. Microorganisms. 2023;11:756. DOIPubMedGoogle Scholar
  44. Noden  BH, Roselli  MA, Loss  SR. Effect of urbanization on presence, abundance, and coinfection of bacteria and protozoa in ticks in the US Great Plains. J Med Entomol. 2022;59:95768. DOIPubMedGoogle Scholar

Main Article

1These authors contributed equally to this article.

Page created: September 24, 2025
Page updated: November 26, 2025
Page reviewed: November 26, 2025
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external