Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link

Disclaimer: Early release articles are not considered as final versions. Any changes will be reflected in the online version in the month the article is officially released.

Volume 31, Number 11—November 2025

Research

Two Independent Acquisitions of Multidrug Resistance Gene lsaC in Streptococcus pneumoniae Serotype 20 Multilocus Sequence Type 1257

Bernard BeallComments to Author , Wuling Lin, Zhongya Li, Theresa Tran, Benjamin J. Metcalf, Bridget J. Anderson, Keipp H. Talbot, Lesley McGee, and Sopio Chochua
Author affiliation: ASRT, Inc., Smyrna, Georgia, USA (B. Beall, Z. Li); Centers for Disease Control and Prevention, Atlanta, Georgia, USA (W. Lin, T. Tran, B.J. Metcalf, L. McGee, S. Chochua); New York State Department of Health, Albany, New York, USA (B.J. Anderson); Vanderbilt University School of Medicine, Nashville, Tennessee, USA (K.H. Talbot)

Main Article

Figure 4

Near sequence identity shared between pneumococcal isolates 1–15 and Streptococcus pseudopneumoniae strain 315_SPE in mobile element insertion region in study of independent acquisitions of multidrug resistance gene lsaC in serotype 20/ST1257 S. pneumoniae isolates, United States. The near-identical region includes much of the mobile element itself, and flanking genes that diverge from pneumococcal parental recipient strain (top). The EasyFig (20)  output homology was modified to reflect boundaries between marked homology differences between the 2 pneumococcal strains (focused upon orf17 only) and between the middle pneumococcal strain and the below S. pseudopneumoniae strain (encompassing the last 3 orfs of the mobile elements and most of orf17). ST, sequence type.

Figure 4. Near sequence identity shared between pneumococcal isolates 1–15 and Streptococcus pseudopneumoniae strain 315_SPE in mobile element insertion region in study of independent acquisitions of multidrug resistance gene lsaC in serotype 20/ST1257 S. pneumoniae isolates, United States. The near-identical region includes much of the mobile element itself, and flanking genes that diverge from pneumococcal parental recipient strain (top). The EasyFig (20) output homology was modified to reflect boundaries between marked homology differences between the 2 pneumococcal strains (focused upon orf17 only) and between the middle pneumococcal strain and the below S. pseudopneumoniae strain (encompassing the last 3 orfs of the mobile elements and most of orf17). ST, sequence type.

Main Article

References
  1. Schroeder  MR, Stephens  DS. Macrolide resistance in Streptococcus pneumoniae. Front Cell Infect Microbiol. 2016;6:98. DOIPubMedGoogle Scholar
  2. Murphy PB, Bistas KG, Patel P, Le JK. Clindamycin. Treasure Island (FL): StatPearls Publishing; 2024 [cited 2024 Feb 28]. https://www.ncbi.nlm.nih.gov/books/NBK519574
  3. de Azavedo  JC, McGavin  M, Duncan  C, Low  DE, McGeer  A. Prevalence and mechanisms of macrolide resistance in invasive and noninvasive group B streptococcus isolates from Ontario, Canada. Antimicrob Agents Chemother. 2001;45:35048. DOIPubMedGoogle Scholar
  4. Achard  A, Villers  C, Pichereau  V, Leclercq  R. New lnu(C) gene conferring resistance to lincomycin by nucleotidylation in Streptococcus agalactiae UCN36. Antimicrob Agents Chemother. 2005;49:27169. DOIPubMedGoogle Scholar
  5. Malbruny  B, Werno  AM, Murdoch  DR, Leclercq  R, Cattoir  V. Cross-resistance to lincosamides, streptogramins A, and pleuromutilins due to the lsa(C) gene in Streptococcus agalactiae UCN70. Antimicrob Agents Chemother. 2011;55:14704. DOIPubMedGoogle Scholar
  6. Douarre  PE, Sauvage  E, Poyart  C, Glaser  P. Host specificity in the diversity and transfer of lsa resistance genes in group B Streptococcus. J Antimicrob Chemother. 2015;70:320513. DOIPubMedGoogle Scholar
  7. Schwarz  S, Shen  J, Kadlec  K, Wang  Y, Brenner Michael  G, Feßler  AT, et al. Lincosamides, streptogramins, phenicols, and pleuromutilins: mode of action and mechanisms of resistance. Cold Spring Harb Perspect Med. 2016;6:a027037. DOIPubMedGoogle Scholar
  8. US Food and Drug Administration. Xenleta: highlights of prescribing information [cited 2019 Sep 16]. https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/211672s000,211673s000lbl.pdf
  9. Cao  Y, Zhu  J, Liang  B, Guo  Y, Ding  L, Hu  F. Assessment of lefamulin 20 µg disk versus broth microdilution when tested against common respiratory pathogens. Int J Antimicrob Agents. 2024;64:107366. DOIPubMedGoogle Scholar
  10. Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing, 34th ed (M100-S34). Wayne, PA: The Institute; 2024.
  11. ABCs Bactfacts Interactive Data Dashboard. Active bacterial core surveillance reports for 1997–2021 [cited 2024 Oct 13]. https://www.cdc.gov/abcs/bact-facts/data-dashboard.html
  12. Metcalf  BJ, Gertz  RE Jr, Gladstone  RA, Walker  H, Sherwood  LK, Jackson  D, et al.; Active Bacterial Core surveillance team. Strain features and distributions in pneumococci from children with invasive disease before and after 13-valent conjugate vaccine implementation in the USA. Clin Microbiol Infect. 2016;22:60.e929. DOIPubMedGoogle Scholar
  13. Metcalf  BJ. CDC streptococcal bioinformatics pipelines [cited 2023 Dec 1]. https://github.com/BenJamesMetcalf
  14. Chochua  S, Beall  B, Lin  W, Tran  T, Rivers  J, Li  Z, et al. The emergent invasive serotype 4 ST10172 strain acquires vanG type vancomycin resistance element: a case of a 66-year-old with bacteremic pneumococcal pneumonia. J Infect Dis. 2025;231:74650. DOIPubMedGoogle Scholar
  15. Paukner  S, Riedl  R. Pleuromutilins: potent drugs for resistant bugs—mode of action and resistance. Cold Spring Harb Perspect Med. 2017;7:a027110. DOIPubMedGoogle Scholar
  16. Kolmogorov  M, Yuan  J, Lin  Y, Pevzner  PA. Assembly of long, error-prone reads using repeat graphs. Nat Biotechnol. 2019;37:5406. DOIPubMedGoogle Scholar
  17. Lin  Y, Yuan  J, Kolmogorov  M, Shen  MW, Chaisson  M, Pevzner  PA. Assembly of long error-prone reads using de Bruijn graphs. Proc Natl Acad Sci U S A. 2016;113:E8396405. DOIPubMedGoogle Scholar
  18. Camacho  C, Coulouris  G, Avagyan  V, Ma  N, Papadopoulos  J, Bealer  K, et al. BLAST+: architecture and applications. BMC Bioinformatics. 2009;10:421. DOIPubMedGoogle Scholar
  19. Seemann  T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30:20689. DOIPubMedGoogle Scholar
  20. Sullivan  MJ, Petty  NK, Beatson  SA. Easyfig: a genome comparison visualizer. Bioinformatics. 2011;27:100910. DOIPubMedGoogle Scholar
  21. Gardner  SN, Slezak  T, Hall  BG. kSNP3.0: SNP detection and phylogenetic analysis of genomes without genome alignment or reference genome. Bioinformatics. 2015;31:28778. DOIPubMedGoogle Scholar
  22. Kumar  S, Stecher  G, Tamura  K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33:18704. DOIPubMedGoogle Scholar
  23. Grant  JR, Enns  E, Marinier  E, Mandal  A, Herman  EK, Chen  C, et al. Proksee: in-depth characterization and visualization of bacterial genomes nucleic acids research. Nucleic Acids Res. 2023;51(W1):W484–92.
  24. Brown  CL, Mullet  J, Hindi  F, Stoll  JE, Gupta  S, Choi  M, et al. mobileOG-db: a manually curated database of protein families mediating the life cycle of bacterial mobile genetic elements. Appl Environ Microbiol. 2022;88:e0099122. DOIPubMedGoogle Scholar
  25. Darling  AE, Mau  B, Perna  NT. progressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS One. 2010;5:e11147. DOIPubMedGoogle Scholar
  26. Croucher  NJ, Page  AJ, Connor  TR, Delaney  AJ, Keane  JA, Bentley  SD, et al. Rapid phylogenetic analysis of large samples of recombinant bacterial whole genome sequences using Gubbins. Nucleic Acids Res. 2015;43:e15. DOIPubMedGoogle Scholar
  27. Clewell  DB, Flannagan  SE, Jaworski  DD, Clewell  DB. Unconstrained bacterial promiscuity: the Tn916-Tn1545 family of conjugative transposons. Trends Microbiol. 1995;3:22936. DOIPubMedGoogle Scholar
  28. Metcalf  BJ, Chochua  S, Walker  H, Tran  T, Li  Z, Varghese  J, et al. Invasive pneumococcal strain distributions and isolate clusters associated with persons experiencing homelessness during 2018. Clin Infect Dis. 2021;72:e94856. DOIPubMedGoogle Scholar
  29. Beall  B, Chochua  S, Li  Z, Tran  T, Varghese  J, McGee  L, et al. Invasive pneumococcal disease clusters disproportionally impact persons experiencing homelessness, injecting drug users, and the western United States. J Infect Dis. 2022;226:33241. DOIPubMedGoogle Scholar
  30. Glambek  M, Skrede  S, Sivertsen  A, Kittang  BR, Kaci  A, Jonassen  CM, et al.; Norwegian Study Group on Streptococcus dysgalactiae. Antimicrobial resistance patterns in Streptococcus dysgalactiae in a One Health perspective. Front Microbiol. 2024;15:1423762. DOIPubMedGoogle Scholar
  31. D’Aeth  JC, van der Linden  MP, McGee  L, de Lencastre  H, Turner  P, Song  J-H, et al.; GPS Consortium. The role of interspecies recombination in the evolution of antibiotic-resistant pneumococci. Elife. 2021;10:e67113. DOIPubMedGoogle Scholar
  32. Beall  B, Chochua  S, Metcalf  B, Lin  W, Tran  T, Li  Z, et al. Increased proportions of invasive pneumococcal disease cases among adults experiencing homelessness sets stage for new serotype 4 capsular-switch recombinant. J Infect Dis. 2025;231:87182. DOIPubMedGoogle Scholar
  33. Beall  B, Walker  H, Tran  T, Li  Z, Varghese  J, McGee  L, et al. Upsurge of conjugate vaccine serotype 4 invasive pneumococcal disease clusters among adults experiencing homelessness in California, Colorado, and New Mexico. J Infect Dis. 2021;223:12419. DOIPubMedGoogle Scholar
  34. Sankilampi  U, Honkanen  PO, Bloigu  A, Leinonen  M. Persistence of antibodies to pneumococcal capsular polysaccharide vaccine in the elderly. J Infect Dis. 1997;176:11004. DOIPubMedGoogle Scholar
  35. Kobayashi  M, Leidner  AJ, Gierke  R, Farrar  JL, Morgan  RL, Campos-Outcalt  D, et al. Use of 21-valent pneumococcal conjugate vaccine among U.S. adults: recommendations of the Advisory Committee on Immunization Practices—United States, 2024. MMWR Morb Mortal Wkly Rep. 2024;73:7938. DOIPubMedGoogle Scholar
  36. Huang  SS, Hinrichsen  VL, Stevenson  AE, Rifas-Shiman  SL, Kleinman  K, Pelton  SI, et al. Continued impact of pneumococcal conjugate vaccine on carriage in young children. Pediatrics. 2009;124:e111. DOIPubMedGoogle Scholar
  37. Sharma  D, Baughman  W, Holst  A, Thomas  S, Jackson  D, da Gloria Carvalho  M, et al. Pneumococcal carriage and invasive disease in children before introduction of the 13-valent conjugate vaccine: comparison with the era before 7-valent conjugate vaccine. Pediatr Infect Dis J. 2013;32:e4553. DOIPubMedGoogle Scholar
  38. Desai  AP, Sharma  D, Crispell  EK, Baughman  W, Thomas  S, Tunali  A, et al. Decline in pneumococcal nasopharyngeal carriage of vaccine serotypes after the introduction of the 13-valent pneumococcal conjugate vaccine in children in Atlanta, Georgia. Pediatr Infect Dis J. 2015;34:116874. DOIPubMedGoogle Scholar
  39. Milucky  J, Carvalho  MG, Rouphael  N, Bennett  NM, Talbot  HK, Harrison  LH, et al.; Adult Pneumococcal Carriage Study Group. Streptococcus pneumoniae colonization after introduction of 13-valent pneumococcal conjugate vaccine for US adults 65 years of age and older, 2015-2016. Vaccine. 2019;37:1094100. DOIPubMedGoogle Scholar
  40. Kellner  JD, McGeer  A, Cetron  MS, Low  DE, Butler  JC, Matlow  A, et al. The use of Streptococcus pneumoniae nasopharyngeal isolates from healthy children to predict features of invasive disease. Pediatr Infect Dis J. 1998;17:27986. DOIPubMedGoogle Scholar
  41. Metcalf  BJ, Waldetoft  KW, Beall  BW, Brown  SP. Variation in pneumococcal invasiveness metrics is driven by serotype carriage duration and initial risk of disease. Epidemics. 2023;45:100731. DOIPubMedGoogle Scholar
  42. Domínguez-Hüttinger  E, Boon  NJ, Clarke  TB, Tanaka  RJ. Mathematical modeling of Streptococcus pneumoniae colonization, invasive infection and treatment. Front Physiol. 2017;8:115. DOIPubMedGoogle Scholar
  43. Pilishvili  T, Lexau  C, Farley  MM, Hadler  J, Harrison  LH, Bennett  NM, et al.; Active Bacterial Core Surveillance/Emerging Infections Program Network. Sustained reductions in invasive pneumococcal disease in the era of conjugate vaccine. J Infect Dis. 2010;201:3241. DOIPubMedGoogle Scholar
  44. Ahmed  SS, Pondo  T, Xing  W, McGee  L, Farley  M, Schaffner  W, et al. Early impact of 13-valent pneumococcal conjugate vaccine use on invasive pneumococcal disease among adults with and without underlying medical conditions—United States. Clin Infect Dis. 2020;70:248492. DOIPubMedGoogle Scholar
  45. US Department of Housing and Urban Development. Annual homelessness assessment report [cited 2025 Sep 26]. https://www.huduser.gov/portal/datasets/ahar.html
  46. Kellner  JD, Ricketson  LJ, Demczuk  WHB, Martin  I, Tyrrell  GJ, Vanderkooi  OG, et al. Whole-genome analysis of Streptococcus pneumoniae serotype 4 causing outbreak of invasive pneumococcal disease, Alberta, Canada. Emerg Infect Dis. 2021;27:186775. DOIPubMedGoogle Scholar
  47. Navajo Epidemiology Center. Serotype 4 invasive pneumococcal disease (IPD) information for providers [cited 2024 Jul 22]. https://nec.navajo-nsn.gov/Projects-Reports/Infectious-Disease
  48. Golubchik  T, Brueggemann  AB, Street  T, Gertz  RE Jr, Spencer  CC, Ho  T, et al. Pneumococcal genome sequencing tracks a vaccine escape variant formed through a multi-fragment recombination event. Nat Genet. 2012;44:3525. DOIPubMedGoogle Scholar

Main Article

Page created: September 19, 2025
Page updated: November 25, 2025
Page reviewed: November 25, 2025
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external