Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link

Disclaimer: Early release articles are not considered as final versions. Any changes will be reflected in the online version in the month the article is officially released.

Volume 31, Number 9—September 2025

Research

Sporothrix brasiliensis Treatment Failure without Initial Elevated Itraconazole MICs in Felids at Border of Brazil

Carolina Melchior do Prado1, Bram Spruijtenburg1, Emanuel Razzolini, Luciana Chiyo, Carlos Santi, Caroline Amaral Martins, Gabriela Santacruz, Nancy Segovia, José Pereira Brunelli, Regielly Caroline Raimundo Cognialli, Jacques F. Meis, Vânia Aparecida Vicente, Theun de Groot, Eelco F.J. Meijer2, and Flávio Queiroz-Telles2Comments to Author 
Author affiliation: Radboudumc–CWZ Center of Expertise for Mycology, Nijmegen, the Netherlands (C.M. do Prado, B. Spruijtenburg, J.F. Meis, T. de Groot, E.F.J. Meijer); Federal University of Paraná, Curitiba, Brazil (C.M. do Prado, E. Razzolini, R.C.R. Cognialli, V.A. Vicente, F. Queiroz-Telles); Canisius-Wilhelmina Hospital (CWZ)/Dicoon, Nijmegen (B. Spruijtenburg, T. de Groot, E.F.J. Meijer); Zoonosis Control Center, Foz do Iguaçu, Brazil (L. Chiyo, C. Santi, C.A. Martins); National University of the East, Minga Guazú, Paraguay (G. Santacruz, N. Segovia); Ministry of Public Health and Social Welfare, Asuncion, Paraguay (J.P. Brunelli); Institute of Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, Excellence Center for Medical Mycology, University of Cologne, Cologne, Germany (J.F. Meis)

Main Article

Figure 3

Distribution of MICs for 108 clinical isolates in study of Sporothrix brasiliensis treatment failure without initial elevated itraconazole MICs in felids at border of Brazil. MICs were determined according to Clinical Laboratory and Standards Institute M38 (22) and M27 (24) guidelines. Red dotted lines indicate division of wild-type versus non–wild-type isolates based on ECV values proposed by Espinel-Ingroff (23), when available. The ECV value for voriconazole is 32 µg/mL. MICs are given in µg/mL. For AFG and MFG, the MEC50 (filamentous phase) was determined. AFG, anidulafungin; AMB, amphotericin B; FLU, fluconazole; ISA, isavuconazole; ITC, itraconazole; M, mycelial phase; MEC50, minimal effective concentration that inhibits 50% of isolates; MFG, micafungin; MIC50, MIC that inhibits 50% of isolates; POS, posaconazole; TRB, terbinafine; VOR, voriconazole; Y, yeast phase.

Figure 3. Distribution of MICs for 108 clinical isolates in study of Sporothrix brasiliensis treatment failure without initial elevated itraconazole MICs in felids at border of Brazil. MICs were determined according to Clinical Laboratory and Standards Institute M38 (22) and M27 (24) guidelines. Red dotted lines indicate division of wild-type versus non–wild-type isolates based on ECV values proposed by Espinel-Ingroff (23), when available. The ECV value for voriconazole is 32 µg/mL. MICs are given in µg/mL. For AFG and MFG, the MEC50 (filamentous phase) was determined. AFG, anidulafungin; AMB, amphotericin B; FLU, fluconazole; ISA, isavuconazole; ITC, itraconazole; M, mycelial phase; MEC50, minimal effective concentration that inhibits 50% of isolates; MFG, micafungin; MIC50, MIC that inhibits 50% of isolates; POS, posaconazole; TRB, terbinafine; VOR, voriconazole; Y, yeast phase.

Main Article

References
  1. Rossow  JA, Queiroz-Telles  F, Caceres  DH, Beer  KD, Jackson  BR, Pereira  JG, et al. A One Health approach to combatting Sporothrix brasiliensis: narrative review of an emerging zoonotic fungal pathogen in South America. J Fungi (Basel). 2020;6:247. DOIPubMedGoogle Scholar
  2. Rodrigues  AM, Della Terra  PP, Gremião  ID, Pereira  SA, Orofino-Costa  R, de Camargo  ZP. The threat of emerging and re-emerging pathogenic Sporothrix species. Mycopathologia. 2020;185:81342. DOIPubMedGoogle Scholar
  3. Rodrigues  AM, Gonçalves  SS, de Carvalho  JA, Borba-Santos  LP, Rozental  S, Camargo  ZP. Current progress on epidemiology, diagnosis, and treatment of sporotrichosis and their future trends. J Fungi (Basel). 2022;8:776. DOIPubMedGoogle Scholar
  4. do Prado  CM, Razzolini  E, Santacruz  G, Ojeda  L, Geraldo  MR, Segovia  N, et al. First cases of feline sporotrichosis caused by Sporothrix brasiliensis in Paraguay. J Fungi (Basel). 2023;9:972. DOIPubMedGoogle Scholar
  5. Etchecopaz  A, Toscanini  MA, Gisbert  A, Mas  J, Scarpa  M, Iovannitti  CA, et al. Sporothrix brasiliensis: a review of an emerging South American fungal pathogen, its related disease, presentation and spread in Argentina. J Fungi (Basel). 2021;7:170. DOIPubMedGoogle Scholar
  6. Thomson  P, González  C, Blank  O, Ramírez  V, Río  CD, Santibáñez  S, et al. Sporotrichosis outbreak due to Sporothrix brasiliensis in domestic cats in Magallanes, Chile: a One-Health-approach study. J Fungi (Basel). 2023;9:226. DOIPubMedGoogle Scholar
  7. Gallo  S, Arias-Rodriguez  C, Sánchez-Cifuentes  EA, Santa-Vélez  C, Larrañaga-Piñeres  I, Gaviria-Barrera  ME, et al. First three cases of cat-associated zoonotic cutaneous sporotrichosis in Colombia. Int J Dermatol. 2022;61:12769. DOIPubMedGoogle Scholar
  8. Cognialli  RCR, Cáceres  DH, Bastos  FAGD, Cavassin  FB, Lustosa  BPR, Vicente  VA, et al. Rising incidence of Sporothrix brasiliensis infections, Curitiba, Brazil, 2011–2022. Emerg Infect Dis. 2023;29:13309. DOIPubMedGoogle Scholar
  9. Rabello  VBS, Almeida  MA, Bernardes-Engemann  AR, Almeida-Paes  R, de Macedo  PM, Zancopé-Oliveira  RM. The historical burden of sporotrichosis in Brazil: a systematic review of cases reported from 1907 to 2020. Braz J Microbiol. 2022;53:23144. DOIPubMedGoogle Scholar
  10. Etchecopaz  AN, Lanza  N, Toscanini  MA, Devoto  TB, Pola  SJ, Daneri  GL, et al. Sporotrichosis caused by Sporothrix brasiliensis in Argentina: Case report, molecular identification and in vitro susceptibility pattern to antifungal drugs. J Mycol Med. 2020;30:100908. DOIPubMedGoogle Scholar
  11. Barnacle  JR, Chow  YJ, Borman  AM, Wyllie  S, Dominguez  V, Russell  K, et al. The first three reported cases of Sporothrix brasiliensis cat-transmitted sporotrichosis outside South America. Med Mycol Case Rep. 2022;39:147. DOIPubMedGoogle Scholar
  12. Kaadan  MI, Dennis  M, Desai  N, Yadavalli  G, Lederer  P. One Health education for future physicians: a case report of cat-transmitted sporotrichosis. Open Forum Infect Dis. 2020;7:ofaa049. DOIGoogle Scholar
  13. Queiroz-Telles  F, Cognialli  RC, Salvador  GL, Moreira  GA, Herkert  PF, Hagen  F. Cutaneous disseminated sporotrichosis in immunocompetent patient: Case report and literature review. Med Mycol Case Rep. 2022;36:314. DOIPubMedGoogle Scholar
  14. Bastos  F, Farias  M, Monti  F, Cognialli  R, Lopuch  L, Gabriel  A, et al. Spread of Sporothrix brasiliensis from the sneeze of infected cats: a potential novel route of transmission. Med Mycol. 2022;60(Supplement_1):myac072P462. DOIGoogle Scholar
  15. Gremião  IDF. Martins da Silva da Rocha E, Montenegro H, Carneiro AJB, Xavier MO, de Farias MR, et al. Guideline for the management of feline sporotrichosis caused by Sporothrix brasiliensis and literature revision. Braz J Microbiol. 2021;52:107–24. DOIGoogle Scholar
  16. Spruijtenburg  B, Bombassaro  A, Meijer  EFJ, Rodrigues  AM, Grisolia  ME, Vicente  VA, et al. Sporothrix brasiliensis genotyping reveals numerous independent zoonotic introductions in Brazil. J Infect. 2023;86:6103. DOIPubMedGoogle Scholar
  17. Roldán Villalobos  W, Monti  F, Ferreira  T, Sato  S, Telles  F, Farias  M. Therapeutic efficacy of isavuconazole and potassium iodide in a cat with refractory sporotrichosis. Vet Dermatol. 2023;34:6248. DOIPubMedGoogle Scholar
  18. Nakasu  CCT, Waller  SB, Ripoll  MK, Ferreira  MRA, Conceição  FR, Gomes  ADR, et al. Feline sporotrichosis: a case series of itraconazole-resistant Sporothrix brasiliensis infection. Braz J Microbiol. 2021;52:16371. DOIPubMedGoogle Scholar
  19. Ribeiro Dos Santos  A, Gade  L, Misas  E, Litvintseva  AP, Nunnally  NS, Parnell  LA, et al. Bimodal distribution of azole susceptibility in Sporothrix brasiliensis isolates in Brazil. Antimicrob Agents Chemother. 2024;68:e0162023. DOIPubMedGoogle Scholar
  20. Ramos  MLM, Almeida-Silva  F, de Souza Rabello  VB, Nahal  J, Figueiredo-Carvalho  MHG, Bernardes-Engemann  AR, et al. In vitro activity of the anthelmintic drug niclosamide against Sporothrix spp. strains with distinct genetic and antifungal susceptibility backgrounds. Braz J Microbiol. 2024;55:135968. DOIPubMedGoogle Scholar
  21. Waller  SB, Ripoll  MK, Pierobom  RM, Rodrigues  PRC, Costa  PPC, Pinto  FDCL, et al. Screening of alkaloids and withanolides isolated from Solanaceae plants for antifungal properties against non-wild type Sporothrix brasiliensis. J Mycol Med. 2024;34:101451. DOIPubMedGoogle Scholar
  22. Clinical and Laboratory Standards Institute. Reference method for broth dilution antifungal susceptibility testing of filamentous fungi. CLSI standard M38. 3rd edition. Wayne (PA): The Institute; 2017.
  23. Espinel-Ingroff  A, Abreu  DPB, Almeida-Paes  R, Brilhante  RSN, Chakrabarti  A, Chowdhary  A, et al. Multicenter, international study of MIC/MEC distributions for definition of epidemiological cutoff values for Sporothrix species identified by molecular methods. Antimicrob Agents Chemother. 2017;61:e0105717. DOIPubMedGoogle Scholar
  24. Clinical and Laboratory Standards Institute. Reference method for broth dilution antifungal susceptibility testing of yeasts. CLSI standard M27. 4th edition. Wayne (PA): The Institute; 2017.
  25. Rodrigues  AM, de Melo Teixeira  M, de Hoog  GS, Schubach  TM, Pereira  SA, Fernandes  GF, et al. Phylogenetic analysis reveals a high prevalence of Sporothrix brasiliensis in feline sporotrichosis outbreaks. PLoS Negl Trop Dis. 2013;7:e2281. DOIPubMedGoogle Scholar
  26. Silva  CE, Valeriano  CA, Ferraz  CE, Neves  RP, Oliveira  MM, Silva  JC, et al. Epidemiological features and geographical expansion of sporotrichosis in the state of Pernambuco, northeastern Brazil. Future Microbiol. 2021;16:13719. DOIPubMedGoogle Scholar
  27. Alzuguir  CLC, Pereira  SA, Magalhães  MAFM, Almeida-Paes  R, Freitas  DFS, Oliveira  LFA, et al. Geo-epidemiology and socioeconomic aspects of human sporotrichosis in the municipality of Duque de Caxias, Rio de Janeiro, Brazil, between 2007 and 2016. Trans R Soc Trop Med Hyg. 2020;114:99106.PubMedGoogle Scholar
  28. IBGE–Instituto Brasileiro De Geografia E Estatística. Cidades: Foz do Iguaçu. Rio de Janeiro: IBGE, 2022 [cited 2024 Nov 1]. https://cidades.ibge.gov.br/brasil/pr/foz-do-iguacu/panorama
  29. Review  WP. Ciudad del Este, Paraguay population 2024 [cited 2024 Nov 1]. https://worldpopulationreview.com/cities/paraguay/ciudad-del-este
  30. do Prado  CM, Svoboda  WK, Chiyo  L, Queiroz-Telles  F. Fundamentos de Saúde Única (One Health) e Planejamento Estratégico Situacional para Implementação de Política Pública de Saúde para Prevenção e Controle da Esporotricose na Região da Tríplice Fronteira (Brasil, Paraguai, Argentina). In: Zilly A, da Silva RMM, editors. Saúde Pública Na Região Da Fronteira Brasil-Paraguai-Argentina. São Carlos: Pedro & João Editores; 2022. p. 101–18.
  31. Pereira  SA, Gremião  IDF, Kitada  AAB, Boechat  JS, Viana  PG, Schubach  TMP. The epidemiological scenario of feline sporotrichosis in Rio de Janeiro, State of Rio de Janeiro, Brazil. Rev Soc Bras Med Trop. 2014;47:3923. DOIPubMedGoogle Scholar
  32. de Miranda  LHM, Meli  M, Conceição-Silva  F, Novacco  M, Menezes  RC, Pereira  SA, et al. Co-infection with feline retrovirus is related to changes in immunological parameters of cats with sporotrichosis. PLoS One. 2018;13:e0207644. DOIPubMedGoogle Scholar
  33. Araújo  AA, Codeço  C, F S Freitas  D, M de Macedo  P, A Pereira  S, D F Gremião  I, et al. Mathematical model of the dynamics of transmission and control of sporotrichosis in domestic cats. PLoS One. 2023;18:e0272672. DOIPubMedGoogle Scholar
  34. Lloret  A, Hartmann  K, Pennisi  MG, Ferrer  L, Addie  D, Belák  S, et al. Sporotrichosis in cats: ABCD guidelines on prevention and management. J Feline Med Surg. 2013;15:61923. DOIPubMedGoogle Scholar
  35. Fernandez  NB, Spruijtenburg  B, Tiraboschi  IN, Meis  JF, Lugo  A, López Joffre  MC, et al. Genotyping and clonal origin of Sporothrix brasiliensis in human sporotrichosis cases in Argentina. Med Mycol Case Rep. 2024;43:100633. DOIPubMedGoogle Scholar
  36. Fichman  V, Almeida-Silva  F, Francis Saraiva Freitas  D, Zancopé-Oliveira  RM, Gutierrez-Galhardo  MC, Almeida-Paes  R. Severe sporotrichosis caused by Sporothrix brasiliensis: antifungal susceptibility and clinical outcomes. J Fungi (Basel). 2022;9:49. DOIPubMedGoogle Scholar
  37. Reis  EGD, Pereira  SA, Miranda  LHM, Oliveira  RVC, Quintana  MSB, Viana  PG, et al. A randomized clinical trial comparing itraconazole and a combination therapy with itraconazole and potassium iodide for the treatment of feline sporotrichosis. J Fungi (Basel). 2024;10:101. DOIPubMedGoogle Scholar
  38. Waller  SB, Dalla Lana  DF, Quatrin  PM, Ferreira  MRA, Fuentefria  AM, Mezzari  A. Antifungal resistance on Sporothrix species: an overview. Braz J Microbiol. 2021;52:7380. DOIPubMedGoogle Scholar
  39. Fernández-Silva  F, Capilla  J, Mayayo  E, Guarro  J. Modest efficacy of voriconazole against murine infections by Sporothrix schenckii and lack of efficacy against Sporothrix brasiliensis. Mycoses. 2014;57:1214. DOIPubMedGoogle Scholar
  40. Lecca  LO, Paiva  MT, de Oliveira  CSF, Morais  MHF, de Azevedo  MI, Bastos  CVE, et al. Associated factors and spatial patterns of the epidemic sporotrichosis in a high density human populated area: A cross-sectional study from 2016 to 2018. Prev Vet Med. 2020;176:104939. DOIPubMedGoogle Scholar
  41. Schubach  TM, Schubach  A, Okamoto  T, Barros  MB, Figueiredo  FB, Cuzzi  T, et al. Evaluation of an epidemic of sporotrichosis in cats: 347 cases (1998-2001). J Am Vet Med Assoc. 2004;224:16239. DOIPubMedGoogle Scholar
  42. Boechat  JS, Oliveira  MME, Almeida-Paes  R, Gremião  IDF, Machado  ACS, Oliveira  RVC, et al. Feline sporotrichosis: associations between clinical-epidemiological profiles and phenotypic-genotypic characteristics of the etiological agents in the Rio de Janeiro epizootic area. Mem Inst Oswaldo Cruz. 2018;113:18596. DOIPubMedGoogle Scholar
  43. Chen  Y, Ma  F, Lu  T, Budha  N, Jin  JY, Kenny  JR, et al. Development of a physiologically based pharmacokinetic model for itraconazole pharmacokinetics and drug-drug interaction prediction. Clin Pharmacokinet. 2016;55:73549. DOIPubMedGoogle Scholar
  44. Prentice  AG, Glasmacher  A. Making sense of itraconazole pharmacokinetics. J Antimicrob Chemother. 2005;56(Suppl 1):i1722. DOIPubMedGoogle Scholar

Main Article

1These first authors contributed equally to this article.

2These senior authors contributed equally to this article.

Page created: June 23, 2025
Page updated: August 26, 2025
Page reviewed: August 26, 2025
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external