Volume 12, Number 9—September 2006
Research
Genomic Signatures of Human versus Avian Influenza A Viruses
Table 1
Validated amino acid signatures separating avian influenza viruses from human influenza viruses*
Gene | Position | Avian residues | Human residues | Associated functional domains |
---|---|---|---|---|
PB2 | 44 | A(208),S(7) | S(831),A(10),L(2) | PB1–1, NP-1 (9), MLS (10) |
199 | A(210),S(5) | S(842),A(3) | NP-1 (9) | |
271 | T(210),A(3),I(1),M(1) | A(836),T(6),S(1) | Cap-N (11) | |
475 | L(214),M(1) | M(839),L(3) | NLS (12) | |
588 | A(203),T(6),V(6) | I(835),V(3),A(2) | PB1–2, NP-2 (9) | |
613 | V(212),A(3) | T(816),I(16),A(8),V(1) | PB1–2, NP-2 (9) | |
627 | E(196),K(19) | K(838),R(2),E(1) | PB1–2, NP-2 (9) | |
674 | A(204),S(6),T(2),G(2),E(1) | T(836),A(2),I(2),P(1) | PB1–2, NP-2 (9) | |
PB1 | 327 | R(147),K(3) | K(766),R(66) | cRNA (13) |
336 | V(142),I(8) | I(773),V(59) | cRNA (13) | |
PB1-F2 | 73 | K(397),R(6),I(1) | R(594),K(87),S(1) | ANT3, VDAC1 (14), mitochondrial localization (15), predicted amphipathic helix (16) |
76 | V(401),A(3) | A(625),V(57) | ANT3, VADC1 (14), predicted amphipathic helix (16) | |
79 | R(369),Q(34),L(1) | Q(607),R(75) | ANT3, VADC1 (14), predicted amphipathic helix (16) | |
82 | L(382),S(22) | S(596),L(86) | ANT3, VADC1 (14), predicted amphipathic helix (16) | |
87 | E(389),G(14),K(1) | G(637),E(45) | ANT3, VADC1 (14) | |
PA | 28 | P(213),S(1) | L(831),P(9),R(2) | Proteolysis (17) |
55 | D(214) | N(836),D(5) | Proteolysis (17) | |
57 | R(210),Q(4) | Q(829),R(6),L(4),K(2) | Proteolysis (17) | |
225 | S(213),C(1) | C(829),S(10) | Proteolysis (17), NLSII (18) | |
268 | L(214) | I(827),L(11), P(1) | ||
356 | K(212),X(1),R(1) | R(827),K(11) | ||
382 | E(208),D(5),V(1) | D(824),E(11),V(2),N(1) | ||
404 | A(214) | S(828),A(9),P(1) | ||
409 | S(189),N(24),I(1) | N(830),S(7),I(1) | ||
552 | T(213),N(1) | S(835),T(1),I(1) | ||
HA | 237 | N(582),R(49),D(2),H(1),S(1) | R(1209),N(12),S(2),D(1),K(1) | |
389 | D(659),N(20),G(1),Y(1) | N(819),D(121) | ||
NP | 16 | G(356),S(9),D(6),T(2) | D(646),G(7) | RNA binding (19), BAT1/UAP56 (20), MxA (21), PB2–1 (22) |
33 | V(355),I(18) | I(638),V(15) | RNA binding (19), MxA (21), PB2–1 (22) | |
61 | I(366),M(6),V(1) | L(642),I(8) | RNA binding (19), MxA (21), PB2–1 (22) | |
100 | R(360),K(11),V(2) | V(619),I(32),A(1),M(1) | RNA binding (19), MxA (21), PB2–1 (22) | |
109 | I(359),V(10),M(2),T(2) | V(614),I(34),T(3),A(2) | RNA binding (19), MxA (21), PB2–1 (22) | |
214 | R(352),K(20),L(1) | K(640),R(10) | NLS (23), CRM1 (24), NP-1 (25) | |
283 | L(372),P(1) | P(643),L(7) | NP-1 (25), PB2–2 (22) | |
293 | R(371),K(2) | K(622),R(28) | NP-1 (25), PB2–2 (22) | |
305 | R(369),K(4) | K(636),R(14) | NP-1 (25), PB2–2 (22) | |
313 | F(371),I(1),L(1) | Y(642),F(8) | NP-1 (25), PB2–2 (22) | |
357 | Q(368),K(4),T(1) | K(644),R(8),Q(1) | NAS (26), NP-1 (25), PB2–3 (22) | |
372 | E(357),D(15),K(1) | D(630),E(23) | NAS (26), NP-2 (25), PB2–3 (22) | |
422 | R(373) | K(630),R(23) | CTL epitope (27), NP-2 (25), PB2–3 (22) | |
442 | T(372),A(1) | A(629),T(23),R(1) | NP-2 (25), PB2–3 (22) | |
455 | D(373) | E(630),D(22),T(1) | NP-2 (25), PB2–3 (22) | |
M1 | 115 | V(856),I(2),L(1),G(1) | I(981),V(9) | |
121 | T(840),A(19),P(1) | A(988),T(2) | ||
137 | T(859),A(1),P(1) | A(974),T(12) | ||
M2 | 11 | T(434),I(11),S(2) | I(911),T(44) | Host restriction specificities (28), ectodomain (29) |
20 | S(471),N(13) | N(926),S(29) | Host restriction specificities (28). ectodomain (29) | |
57 | Y(481),C(1),H(1) | H(913),Y(33),R(2),Q(1) | CRAC (30), endodomain (29) | |
86 | V(378) | A(924),V(10),T(4),D(1) | Endodomain (29) | |
NS1 | 227 | E(692),G(9),K(1),S(1) | R(897),G(5),K(1),E(1) | |
NS2 | 70 | S(453),G(21),D(1) | G(903),S(2) | M1, NEP dimerization domain (31) |
107 | L(468),S(2),F(1) | F(777),L(16),S(1) | M1, NEP dimerization domain (31) |
*Numbers in parentheses in residue columns are the number of sequences yielding the specific amino acid residue; bold indicates dominant amino acid residue type.
References
- Scholtissek C, Rohde W, von Hoyningen V, Rott R. On the origin of the human influenza virus subtypes H2N2 and H3N2. Virology. 1978;87:13–20. DOIPubMedGoogle Scholar
- Reid AH, Taubenberger JK, Fanning TG. Evidence of an absence: the genetic origins of the 1918 pandemic influenza virus. Nat Rev Microbiol. 2004;2:909–14. DOIPubMedGoogle Scholar
- Taubenberger JK, Reid AH, Lourens RM, Wang R, Jin G, Fanning TG. Characterization of the 1918 influenza virus polymerase genes. Nature. 2005;437:889–93. DOIPubMedGoogle Scholar
- Chang SC, Cheng YY, Shih SR. Avian influenza virus: the threat of a pandemic. Chang Gung Med J. 2006;29:130–4.PubMedGoogle Scholar
- Rice P, Longden I, Bleasby A. EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet. 2000;16:276–7. DOIPubMedGoogle Scholar
- Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series. Oxford: Oxford University Press; 1999. p. 95–8.
- Chen GW, Hsiung CA, Chyn JL, Shih SR, Wen CC, Chang IS. Revealing molecular targets for enterovirus type 71 detection by profile hidden Markov models. Virus Genes. 2005;31:337–47. DOIPubMedGoogle Scholar
- Macken C, Lu H, Goodman J, Boykin L, Boykin L. The value of a database in surveillance and vaccine selection. In: Osterhaus A, Cox N, Hampson AW, editors.Options for the control of influenza IV. Amsterdam: Elsevier Science; 2001. p. 103–6.
- Fouchier RA, Schneeberger PM, Rozendaal FW, Broekman JM, Kemink SA, Munster V, Avian influenza A virus (H7N7) associated with human conjunctivitis and a fatal case of acute respiratory distress syndrome. Proc Natl Acad Sci U S A. 2004;101:1356–61. DOIPubMedGoogle Scholar
- Subbarao EK, London W, Murphy BR. A single amino acid in the PB2 gene of influenza A virus is a determinant of host range. J Virol. 1993;67:1761–4.PubMedGoogle Scholar
- Obenauer JC, Denson J, Mehta PK, Su X, Mukatira S, Finkelstein DB, Large-scale sequence analysis of avian influenza isolates. Science. 2006;311:1576–80. DOIPubMedGoogle Scholar
- Chen Z, Krug RM. Selective nuclear export of viral mRNAs in influenza-virus-infected cells. Trends Microbiol. 2000;8:376–83. DOIPubMedGoogle Scholar
- Chen W, Calvo PA, Malide D, Gibbs J, Schubert U, Bacik I, A novel influenza A virus mitochondrial protein that induces cell death. Nat Med. 2001;7:1306–12. DOIPubMedGoogle Scholar
- Chen GW, Yang CC, Tsao KC, Huang CG, Lee LA, Yang WZ, Influenza A virus PB1–F2 gene in recent Taiwanese isolates. Emerg Infect Dis. 2004;10:630–6.PubMedGoogle Scholar
1These authors contributed equally to this article.
Page created: November 18, 2011
Page updated: November 18, 2011
Page reviewed: November 18, 2011
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.