Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 12, Number 9—September 2006
Research

Genomic Signatures of Human versus Avian Influenza A Viruses

Guang-Wu Chen*1, Shih-Cheng Chang*1, Chee-Keng Mok*, Yu-Luan Lo*, Yu-Nong Kung*, Ji-Hung Huang*, Yun-Han Shih*, Ji-Yi Wang*, Chiayn Chiang*, Chi-Jene Chen*, and Shin-Ru Shih*Comments to Author 
Author affiliations: *Chang Gung University, Taoyuan, Taiwan, Republic of China

Main Article

Table 1

Validated amino acid signatures separating avian influenza viruses from human influenza viruses*

Gene Position Avian residues Human residues Associated functional domains
PB2 44 A(208),S(7) S(831),A(10),L(2) PB1–1, NP-1 (9), MLS (10)
199 A(210),S(5) S(842),A(3) NP-1 (9)
271 T(210),A(3),I(1),M(1) A(836),T(6),S(1) Cap-N (11)
475 L(214),M(1) M(839),L(3) NLS (12)
588 A(203),T(6),V(6) I(835),V(3),A(2) PB1–2, NP-2 (9)
613 V(212),A(3) T(816),I(16),A(8),V(1) PB1–2, NP-2 (9)
627 E(196),K(19) K(838),R(2),E(1) PB1–2, NP-2 (9)
674 A(204),S(6),T(2),G(2),E(1) T(836),A(2),I(2),P(1) PB1–2, NP-2 (9)
PB1 327 R(147),K(3) K(766),R(66) cRNA (13)
336 V(142),I(8) I(773),V(59) cRNA (13)
PB1-F2 73 K(397),R(6),I(1) R(594),K(87),S(1) ANT3, VDAC1 (14), mitochondrial localization (15), predicted amphipathic helix (16)
76 V(401),A(3) A(625),V(57) ANT3, VADC1 (14), predicted amphipathic helix (16)
79 R(369),Q(34),L(1) Q(607),R(75) ANT3, VADC1 (14), predicted amphipathic helix (16)
82 L(382),S(22) S(596),L(86) ANT3, VADC1 (14), predicted amphipathic helix (16)
87 E(389),G(14),K(1) G(637),E(45) ANT3, VADC1 (14)
PA 28 P(213),S(1) L(831),P(9),R(2) Proteolysis (17)
55 D(214) N(836),D(5) Proteolysis (17)
57 R(210),Q(4) Q(829),R(6),L(4),K(2) Proteolysis (17)
225 S(213),C(1) C(829),S(10) Proteolysis (17), NLSII (18)
268 L(214) I(827),L(11), P(1)
356 K(212),X(1),R(1) R(827),K(11)
382 E(208),D(5),V(1) D(824),E(11),V(2),N(1)
404 A(214) S(828),A(9),P(1)
409 S(189),N(24),I(1) N(830),S(7),I(1)
552 T(213),N(1) S(835),T(1),I(1)
HA 237 N(582),R(49),D(2),H(1),S(1) R(1209),N(12),S(2),D(1),K(1)
389 D(659),N(20),G(1),Y(1) N(819),D(121)
NP 16 G(356),S(9),D(6),T(2) D(646),G(7) RNA binding (19), BAT1/UAP56 (20), MxA (21), PB2–1 (22)
33 V(355),I(18) I(638),V(15) RNA binding (19), MxA (21), PB2–1 (22)
61 I(366),M(6),V(1) L(642),I(8) RNA binding (19), MxA (21), PB2–1 (22)
100 R(360),K(11),V(2) V(619),I(32),A(1),M(1) RNA binding (19), MxA (21), PB2–1 (22)
109 I(359),V(10),M(2),T(2) V(614),I(34),T(3),A(2) RNA binding (19), MxA (21), PB2–1 (22)
214 R(352),K(20),L(1) K(640),R(10) NLS (23), CRM1 (24), NP-1 (25)
283 L(372),P(1) P(643),L(7) NP-1 (25), PB2–2 (22)
293 R(371),K(2) K(622),R(28) NP-1 (25), PB2–2 (22)
305 R(369),K(4) K(636),R(14) NP-1 (25), PB2–2 (22)
313 F(371),I(1),L(1) Y(642),F(8) NP-1 (25), PB2–2 (22)
357 Q(368),K(4),T(1) K(644),R(8),Q(1) NAS (26), NP-1 (25), PB2–3 (22)
372 E(357),D(15),K(1) D(630),E(23) NAS (26), NP-2 (25), PB2–3 (22)
422 R(373) K(630),R(23) CTL epitope (27), NP-2 (25), PB2–3 (22)
442 T(372),A(1) A(629),T(23),R(1) NP-2 (25), PB2–3 (22)
455 D(373) E(630),D(22),T(1) NP-2 (25), PB2–3 (22)
M1 115 V(856),I(2),L(1),G(1) I(981),V(9)
121 T(840),A(19),P(1) A(988),T(2)
137 T(859),A(1),P(1) A(974),T(12)
M2 11 T(434),I(11),S(2) I(911),T(44) Host restriction specificities (28), ectodomain (29)
20 S(471),N(13) N(926),S(29) Host restriction specificities (28). ectodomain (29)
57 Y(481),C(1),H(1) H(913),Y(33),R(2),Q(1) CRAC (30), endodomain (29)
86 V(378) A(924),V(10),T(4),D(1) Endodomain (29)
NS1 227 E(692),G(9),K(1),S(1) R(897),G(5),K(1),E(1)
NS2 70 S(453),G(21),D(1) G(903),S(2) M1, NEP dimerization domain (31)
107 L(468),S(2),F(1) F(777),L(16),S(1) M1, NEP dimerization domain (31)

*Numbers in parentheses in residue columns are the number of sequences yielding the specific amino acid residue; bold indicates dominant amino acid residue type.

Main Article

References
  1. Scholtissek  C, Rohde  W, von Hoyningen  V, Rott  R. On the origin of the human influenza virus subtypes H2N2 and H3N2. Virology. 1978;87:1320. DOIPubMedGoogle Scholar
  2. Reid  AH, Taubenberger  JK, Fanning  TG. Evidence of an absence: the genetic origins of the 1918 pandemic influenza virus. Nat Rev Microbiol. 2004;2:90914. DOIPubMedGoogle Scholar
  3. Taubenberger  JK, Reid  AH, Lourens  RM, Wang  R, Jin  G, Fanning  TG. Characterization of the 1918 influenza virus polymerase genes. Nature. 2005;437:88993. DOIPubMedGoogle Scholar
  4. Chang  SC, Cheng  YY, Shih  SR. Avian influenza virus: the threat of a pandemic. Chang Gung Med J. 2006;29:1304.PubMedGoogle Scholar
  5. Rice  P, Longden  I, Bleasby  A. EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet. 2000;16:2767. DOIPubMedGoogle Scholar
  6. Hall  TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series. Oxford: Oxford University Press; 1999. p. 95–8.
  7. Chen  GW, Hsiung  CA, Chyn  JL, Shih  SR, Wen  CC, Chang  IS. Revealing molecular targets for enterovirus type 71 detection by profile hidden Markov models. Virus Genes. 2005;31:33747. DOIPubMedGoogle Scholar
  8. Macken  C, Lu  H, Goodman  J, Boykin  L, Boykin  L. The value of a database in surveillance and vaccine selection. In: Osterhaus A, Cox N, Hampson AW, editors.Options for the control of influenza IV. Amsterdam: Elsevier Science; 2001. p. 103–6.
  9. Poole  E, Elton  D, Medcalf  L, Digard  P. Functional domains of the influenza A virus PB2 protein: identification of NP- and PB1-binding sites. Virology. 2004;321:12033. DOIPubMedGoogle Scholar
  10. Carr  SM, Carnero  E, Garcia-Sastre  A, Brownlee  GG, Fodor  E. Characterization of a mitochondrial-targeting signal in the PB2 protein of influenza viruses. Virology. 2006;344:492508. DOIPubMedGoogle Scholar
  11. Honda  A, Mizumoto  K, Ishihama  A. Two separate sequences of PB2 subunit constitute the RNA cap-binding site of influenza virus RNA polymerase. Genes Cells. 1999;4:47585. DOIPubMedGoogle Scholar
  12. Mukaigawa  J, Nayak  DP. Two signals mediate nuclear localization of influenza virus (A/WSN/33) polymerase basic protein 2. J Virol. 1991;65:24553.PubMedGoogle Scholar
  13. Gonzalez  S, Ortin  J. Distinct regions of influenza virus PB1 polymerase subunit recognize vRNA and cRNA templates. EMBO J. 1999;18:376775. DOIPubMedGoogle Scholar
  14. Zamarin  D, Garcia-Sastre  A, Xiao  X, Wang  R, Palese  P. Influenza virus PB1–F2 protein induces cell death through mitochondrial ANT3 and VDAC1. PLoS Pathog. 2005;1:e4. DOIPubMedGoogle Scholar
  15. Yamada  H, Chounan  R, Higashi  Y, Kurihara  N, Kido  H. Mitochondrial targeting sequence of the influenza A virus PB1–F2 protein and its function in mitochondria. FEBS Lett. 2004;578:3316. DOIPubMedGoogle Scholar
  16. Gibbs  JS, Malide  D, Hornung  F, Bennink  JR, Yewdell  JW. The influenza A virus PB1–F2 protein targets the inner mitochondrial membrane via a predicted basic amphipathic helix that disrupts mitochondrial function. J Virol. 2003;77:721424. DOIPubMedGoogle Scholar
  17. Sanz-Ezquerro  JJ, Zurcher  T, de la Luna  S, Ortin  J, Nieto  A. The amino-terminal one-third of the influenza virus PA protein is responsible for the induction of proteolysis. J Virol. 1996;70:190511.PubMedGoogle Scholar
  18. Nieto  A, de la Luna  S, Barcena  J, Portela  A, Ortin  J. Complex structure of the nuclear translocation signal of influenza virus polymerase PA subunit. J Gen Virol. 1994;75:2936. DOIPubMedGoogle Scholar
  19. Albo  C, Valencia  A, Portela  A. Identification of an RNA binding region within the N-terminal third of the influenza A virus nucleoprotein. J Virol. 1995;69:3799806.PubMedGoogle Scholar
  20. Momose  F, Basler  CF, O'Neill  RE, Iwamatsu  A, Palese  P, Nagata  K. Cellular splicing factor RAF-2p48/NPI-5/BAT1/UAP56 interacts with the influenza virus nucleoprotein and enhances viral RNA synthesis. J Virol. 2001;75:1899908. DOIPubMedGoogle Scholar
  21. Turan  K, Mibayashi  M, Sugiyama  K, Saito  S, Numajiri  A, Nagata  K. Nuclear MxA proteins form a complex with influenza virus NP and inhibit the transcription of the engineered influenza virus genome. Nucleic Acids Res. 2004;32:64352. DOIPubMedGoogle Scholar
  22. Biswas  SK, Boutz  PL, Nayak  DP. Influenza virus nucleoprotein interacts with influenza virus polymerase proteins. J Virol. 1998;72:5493501.PubMedGoogle Scholar
  23. Weber  F, Kochs  G, Gruber  S, Haller  O. A classical bipartite nuclear localization signal on Thogoto and influenza A virus nucleoproteins. Virology. 1998;250:918. DOIPubMedGoogle Scholar
  24. Elton  D, Simpson-Holley  M, Archer  K, Medcalf  L, Hallam  R, McCauley  J, Interaction of the influenza virus nucleoprotein with the cellular CRM1-mediated nuclear export pathway. J Virol. 2001;75:40819. DOIPubMedGoogle Scholar
  25. Elton  D, Medcalf  E, Bishop  K, Digard  P. Oligomerization of the influenza virus nucleoprotein: identification of positive and negative sequence elements. Virology. 1999;260:190200. DOIPubMedGoogle Scholar
  26. Bullido  R, Gomez-Puertas  P, Albo  C, Portela  A. Several protein regions contribute to determine the nuclear and cytoplasmic localization of the influenza A virus nucleoprotein. J Gen Virol. 2000;81:13542.PubMedGoogle Scholar
  27. Berkhoff  EG, de Wit  E, Geelhoed-Mieras  MM, Boon  AC, Symons  J, Fouchier  RA, Functional constraints of influenza A virus epitopes limit escape from cytotoxic T lymphocytes. J Virol. 2005;79:1123946. DOIPubMedGoogle Scholar
  28. Liu  W, Zou  P, Ding  J, Lu  Y, Chen  YH. Sequence comparison between the extracellular domain of M2 protein human and avian influenza A virus provides new information for bivalent influenza vaccine design. Microbes Infect. 2005;7:1717. DOIPubMedGoogle Scholar
  29. Lamb  RA, Zebedee  SL, Richardson  CD. Influenza virus M2 protein is an integral membrane protein expressed on the infected-cell surface. Cell. 1985;40:62733. DOIPubMedGoogle Scholar
  30. Schroeder  C, Heider  H, Moncke-Buchner  E, Lin  TI. The influenza virus ion channel and maturation cofactor M2 is a cholesterol-binding protein. Eur Biophys J. 2005;34:5266. DOIPubMedGoogle Scholar
  31. Akarsu  H, Burmeister  WP, Petosa  C, Petit  I, Muller  CW, Ruigrok  RW, Crystal structure of the M1 protein-binding domain of the influenza A virus nuclear export protein (NEP/NS2). EMBO J. 2003;22:464655. DOIPubMedGoogle Scholar
  32. Fouchier  RA, Schneeberger  PM, Rozendaal  FW, Broekman  JM, Kemink  SA, Munster  V, Avian influenza A virus (H7N7) associated with human conjunctivitis and a fatal case of acute respiratory distress syndrome. Proc Natl Acad Sci U S A. 2004;101:135661. DOIPubMedGoogle Scholar
  33. Subbarao  EK, London  W, Murphy  BR. A single amino acid in the PB2 gene of influenza A virus is a determinant of host range. J Virol. 1993;67:17614.PubMedGoogle Scholar
  34. Obenauer  JC, Denson  J, Mehta  PK, Su  X, Mukatira  S, Finkelstein  DB, Large-scale sequence analysis of avian influenza isolates. Science. 2006;311:157680. DOIPubMedGoogle Scholar
  35. Chen  Z, Krug  RM. Selective nuclear export of viral mRNAs in influenza-virus-infected cells. Trends Microbiol. 2000;8:37683. DOIPubMedGoogle Scholar
  36. Chen  W, Calvo  PA, Malide  D, Gibbs  J, Schubert  U, Bacik  I, A novel influenza A virus mitochondrial protein that induces cell death. Nat Med. 2001;7:130612. DOIPubMedGoogle Scholar
  37. Chen  GW, Yang  CC, Tsao  KC, Huang  CG, Lee  LA, Yang  WZ, Influenza A virus PB1–F2 gene in recent Taiwanese isolates. Emerg Infect Dis. 2004;10:6306.PubMedGoogle Scholar

Main Article

1These authors contributed equally to this article.

Page created: November 18, 2011
Page updated: November 18, 2011
Page reviewed: November 18, 2011
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external