Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 14, Number 7—July 2008
Research

Wide Distribution of a High-Virulence Borrelia burgdorferi Clone in Europe and North America

Wei-Gang Qiu*Comments to Author , John F. Bruno†, William D. McCaig*, Yun Xu†, Ian Livey‡, Martin E. Schriefer§, and Benjamin J. Luft†
Author affiliations: *Hunter College of the City University of New York, New York, New York, USA; †Stony Brook University, Stony Brook, New York, USA; ‡Baxter Innovations GmBH, Orth/Donau, Austria; §Centers for Disease Control and Prevention, Fort Collins, Colorado, USA;

Main Article

Figure 1

Gene trees showing nucleotide sequence clusters of 68 Borrelia burgdorferi isolates at 1 chromosomal locus (panel A: rrs-rrlA spacer, or intergenic spacer [IGS]) and 3 plasmid loci (panels B, C, and D: ospC on cp26, dbpA on lp54, and BBD14 on lp17, respectively). Trees were inferred based on nucleotide sequence alignments and were rooted by using the Ri5, SV1, or both, sequences as outgroups. The DNADIST and neighbor-joining programs of the PHYLIP package (33) were used for distance calculation and the APE software package (34) was used for tree plotting. Isolates were grouped as clonal groups (A through U), which are named by their typical ospC alleles. Five isolates (Bol26, VS219, MI409, MI415, and MI418) showing atypical allelic associations with ospC alleles, likely caused by recombination, were labeled in orange. Red, European isolates; blue, northeastern US isolates; green, midwestern US isolates. Scale bars indicate number of nucleotide substitutions per site.

Figure 1. Gene trees showing nucleotide sequence clusters of 68 Borrelia burgdorferi isolates at 1 chromosomal locus (panel A: rrs-rrlA spacer, or intergenic spacer [IGS]) and 3 plasmid loci (panels B, C, and D: ospC on cp26, dbpA on lp54, and BBD14 on lp17, respectively). Trees were inferred based on nucleotide sequence alignments and were rooted by using the Ri5, SV1, or both, sequences as outgroups. The DNADIST and neighbor-joining programs of the PHYLIP package (33) were used for distance calculation and the APE software package (34) was used for tree plotting. Isolates were grouped as clonal groups (A through U), which are named by their typical ospC alleles. Five isolates (Bol26, VS219, MI409, MI415, and MI418) showing atypical allelic associations with ospC alleles, likely caused by recombination, were labeled in orange. Red, European isolates; blue, northeastern US isolates; green, midwestern US isolates. Scale bars indicate number of nucleotide substitutions per site.

Main Article

References
  1. Maiden  MC, Bygraves  JA, Feil  E, Morelli  G, Russell  JE, Urwin  R, Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc Natl Acad Sci U S A. 1998;95:31405. DOIPubMedGoogle Scholar
  2. Feil  EJ. Small change: keeping pace with microevolution. Nat Rev Microbiol. 2004;2:48395. DOIPubMedGoogle Scholar
  3. Cohan  FM. Concepts of bacterial biodiversity for the age of genomics. In: Fraser CM, Read TD, Nelson KE, editors. Microbial genomes. Totwa (NJ): Humana Press, Inc.; 2004. p. 175–94.
  4. Fraser  C, Hanage  WP, Spratt  BG. Neutral microepidemic evolution of bacterial pathogens. Proc Natl Acad Sci U S A. 2005;102:196873. DOIPubMedGoogle Scholar
  5. Gevers  D, Cohan  FM, Lawrence  JG, Spratt  BG, Coenye  T, Feil  EJ, Opinion: re-evaluating prokaryotic species. Nat Rev Microbiol. 2005;3:7339. DOIPubMedGoogle Scholar
  6. Steere  AC, Coburn  J, Glickstein  L. The emergence of Lyme disease. J Clin Invest. 2004;113:1093101.PubMedGoogle Scholar
  7. Piesman  J, Gern  L. Lyme borreliosis in Europe and North America. Parasitology. 2004;129(Suppl):S191220. DOIPubMedGoogle Scholar
  8. Centers for Disease Control and Prevention. Lyme disease—United States, 2003–2005. MMWR Morb Mortal Wkly Rep. 2007;56:5736.PubMedGoogle Scholar
  9. Brisson  D, Dykhuizen  DE. ospC diversity in Borrelia burgdorferi: different hosts are different niches. Genetics. 2004;168:71322. DOIPubMedGoogle Scholar
  10. Hanincova  K, Kurtenbach  K, Diuk-Wasser  M, Brei  B, Fish  D. Epidemic spread of Lyme borreliosis, northeastern United States. Emerg Infect Dis. 2006;12:60411.PubMedGoogle Scholar
  11. Rauter  C, Hartung  T. Prevalence of Borrelia burgdorferi sensu lato genospecies in Ixodes ricinus ticks in Europe: a metaanalysis. Appl Environ Microbiol. 2005;71:720316. DOIPubMedGoogle Scholar
  12. Gern  L, Estrada-Pena  A, Frandsen  F, Gray  JS, Jaenson  TG, Jongejan  F, European reservoir hosts of Borrelia burgdorferi sensu lato. Zentralbl Bakteriol. 1998;287:196204.PubMedGoogle Scholar
  13. Wang  IN, Dykhuizen  DE, Qiu  W, Dunn  JJ, Bosler  EM, Luft  BJ. Genetic diversity of ospC in a local population of Borrelia burgdorferi sensu stricto. Genetics. 1999;151:1530.PubMedGoogle Scholar
  14. Alghaferi  MY, Anderson  JM, Park  J, Auwaerter  PG, Aucott  JN, Norris  DE, Borrelia burgdorferi ospC heterogeneity among human and murine isolates from a defined region of northern Maryland and southern Pennsylvania: lack of correlation with invasive and noninvasive genotypes. J Clin Microbiol. 2005;43:187984. DOIPubMedGoogle Scholar
  15. Qiu  WG, Dykhuizen  DE, Acosta  MS, Luft  BJ. Geographic uniformity of the Lyme disease spirochete (Borrelia burgdorferi) and its shared history with tick vector (Ixodes scapularis) in the northeastern United States. Genetics. 2002;160:83349.PubMedGoogle Scholar
  16. Bunikis  J, Garpmo  U, Tsao  J, Berglund  J, Fish  D, Barbour  AG. Sequence typing reveals extensive strain diversity of the Lyme borreliosis agents Borrelia burgdorferi in North America and Borrelia afzelii in Europe. Microbiology. 2004;150:174155. DOIPubMedGoogle Scholar
  17. Qiu  WG, Schutzer  SE, Bruno  JF, Attie  O, Xu  Y, Dunn  JJ, Genetic exchange and plasmid transfers in Borrelia burgdorferi sensu stricto revealed by three-way genome comparisons and multilocus sequence typing. Proc Natl Acad Sci U S A. 2004;101:141505. DOIPubMedGoogle Scholar
  18. Stevenson  B, Miller  JC. Intra- and interbacterial genetic exchange of Lyme disease spirochete erp genes generates sequence identity amidst diversity. J Mol Evol. 2003;57:30924. DOIPubMedGoogle Scholar
  19. Attie  O, Bruno  JF, Xu  Y, Qiu  D, Luft  BJ, Qiu  WG. Co-evolution of the outer surface protein C gene (ospC) and intraspecific lineages of Borrelia burgdorferi sensu stricto in the northeastern United States. Infect Genet Evol. 2007;7:112. DOIPubMedGoogle Scholar
  20. Wormser  GP, Liveris  D, Nowakowski  J, Nadelman  RB, Cavaliere  LF, McKenna  D, Association of specific subtypes of Borrelia burgdorferi with hematogenous dissemination in early Lyme disease. J Infect Dis. 1999;180:7205. DOIPubMedGoogle Scholar
  21. Jones  KL, Glickstein  LJ, Damle  N, Sikand  VK, McHugh  G, Steere  AC. Borrelia burgdorferi genetic markers and disseminated disease in patients with early Lyme disease. J Clin Microbiol. 2006;44:440713. DOIPubMedGoogle Scholar
  22. Seinost  G, Dykhuizen  DE, Dattwyler  RJ, Golde  WT, Dunn  JJ, Wang  IN, Four clones of Borrelia burgdorferi sensu stricto cause invasive infection in humans. Infect Immun. 1999;67:351824.PubMedGoogle Scholar
  23. Baranton  G, Seinost  G, Theodore  G, Postic  D, Dykhuizen  D. Distinct levels of genetic diversity of Borrelia burgdorferi are associated with different aspects of pathogenicity. Res Microbiol. 2001;152:14956. DOIPubMedGoogle Scholar
  24. Lagal  V, Postic  D, Ruzic-Sabljic  E, Baranton  G. Genetic diversity among Borrelia strains determined by single-strand conformation polymorphism analysis of the ospC gene and its association with invasiveness. J Clin Microbiol. 2003;41:505965. DOIPubMedGoogle Scholar
  25. Foretz  M, Postic  D, Baranton  G. Phylogenetic analysis of Borrelia burgdorferi sensu stricto by arbitrarily primed PCR and pulsed-field gel electrophoresis. Int J Syst Bacteriol. 1997;47:118.PubMedGoogle Scholar
  26. Marti Ras  N, Postic  D, Baranton  G. Borrelia burgdorferi sensu stricto, a bacterial species “Made in the U.S.A.”? Int J Syst Bacteriol. 1997;47:11127.PubMedGoogle Scholar
  27. Postic  D, Ras  NM, Lane  RS, Humair  P, Wittenbrink  MM, Baranton  G. Common ancestry of Borrelia burgdorferi sensu lato strains from North America and Europe. J Clin Microbiol. 1999;37:30102.PubMedGoogle Scholar
  28. Avise  JC. Phylogeography: the history and formation of species. Cambridge (MA): Harvard University Press; 2000.
  29. Fraser  CM, Casjens  S, Huang  WM, Sutton  GG, Clayton  R, Lathigra  R, Genomic sequence of a Lyme disease spirochaete, Borrelia burgdorferi. Nature. 1997;390:5806. DOIPubMedGoogle Scholar
  30. Liveris  D, Varde  S, Iyer  R, Koenig  S, Bittker  S, Cooper  D, Genetic diversity of Borrelia burgdorferi in Lyme disease patients as determined by culture versus direct PCR with clinical specimens. J Clin Microbiol. 1999;37:5659.PubMedGoogle Scholar
  31. Thompson  JD, Higgins  DG, Gibson  TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994;22:467380. DOIPubMedGoogle Scholar
  32. Huelsenbeck  JP, Ronquist  F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics. 2001;17:7545. DOIPubMedGoogle Scholar
  33. Felsenstein  J. PHYLIP—phylogeny inference package. Cladistics. 1989;5:1646.
  34. Paradis  E, Claude  J, Strimmer  K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics. 2004;20:28990. DOIPubMedGoogle Scholar
  35. Excoffier  L, Laval  G, Schneider  S. Arlequin ver 3.0: an integratred software package for population data analysis. Evol Bioinform Online. 2005;1:4750.
  36. Glockner  G, Lehmann  R, Romualdi  A, Pradella  S, Schulte-Spechtel  U, Schilhabel  M, Comparative analysis of the Borrelia garinii genome. Nucleic Acids Res. 2004;32:603846. DOIPubMedGoogle Scholar
  37. Sawyer  S. Statistical tests for detecting gene conversion. Mol Biol Evol. 1989;6:52638.PubMedGoogle Scholar
  38. Wang  G, van Dam  AP, Dankert  J. Evidence for frequent OspC gene transfer between Borrelia valaisiana sp. nov. and other Lyme disease spirochetes. FEMS Microbiol Lett. 1999;177:28996. DOIPubMedGoogle Scholar
  39. Barbour  AG, Fish  D. The biological and social phenomenon of Lyme disease. Science. 1993;260:16106. DOIPubMedGoogle Scholar

Main Article

Page created: July 12, 2010
Page updated: July 12, 2010
Page reviewed: July 12, 2010
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external