Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 15, Number 11—November 2009
Letter

Rickettsia massiliae in the Canary Islands

Cite This Article

To the Editor: Rickettsia massiliae was recently recognized as a human tick-borne spotted fever group rickettsia (1). We report the finding of R. massiliae in Rhipicephalus pusillus ticks from Gran Canaria, Canary Islands, Spain. Introduction of this pathogen into the Canary Islands is thought to have resulted from translocation of the European wild rabbit Oryctolagus cuniculus (Linnaeus), a preferred host of R. pusillus ticks (www.kolonin.org/16_4.html), from the Iberian Peninsula 600 years ago (2).

We collected questing adult ticks in 2008 in Gran Canaria and identified 2 tick species, Hyalomma lusitanicum (n = 82 [46 females]) and R. pusillus (n = 8 [5 females]). Whole ticks were preserved in 70% ethanol and used for DNA extraction by using TriReagent (Sigma, St. Louis, MO, USA) according to the manufacturer’s instructions. We identified rickettsial sequences by using PCR primers that amplify fragments of 16S rRNA, ompB, atpA, dnaA, dnaK, and recA genes (Table). Amplicons were cloned into pGEM-T (Promega, Madison, WI, USA), and 3 independent clones were sequenced from both ends for each gene marker. Sequence similarity search was performed by using BLAST (www.ncbi.nlm.nih.gov). Rickettsial DNA was detected in 2 R. pusillus males only; sequences were identical in both ticks. Fragments of 16S rRNA were 99% identical to the R. massiliae strain Mtu5 (CP000683) isolated from R. sanguineus ticks in southern France (3), and fragments of ompB, atpA, dnaA, dnaK, and recA genes were 100% identical to the R. massiliae strain Bar29 (AF123710, AY124739, DQ821798, DQ821828, and AY124750, respectively), previously isolated from R. sanguineus ticks in Catalonia, Spain (4) (Table).

R. massiliae was first isolated in 1992 from R. sanguineus ticks collected near Marseille, France (5). Since then, the pathogen has been identified in different Rhipicephalus species in France, Greece, Portugal, Switzerland, Spain, North and Central Africa, Argentina, and the United States (6,7). R. massiliae has been identified in southern Spain (8) but not in the Canary Islands. R. pusillus ticks are commonly found in southern Europe (Portugal, Spain, and France) and northern Africa (Tunisia and Morocco). All stages of these ticks inhabit burrows of wild rabbits and feed on them (www.kolonin.org/16_4.html).

Wild rabbits were introduced into the Canary Islands at the end of 14th century during colonization by the kingdom of Castilla. Colonists were asked to bring rabbit couples with them to provide food in the islands (2), a practice continued by new colonists because of their interest in hunting this rabbit species. Introduction of wild rabbits by colonists led to establishment of parasites, such as helminths, coccidia, and viruses in the Canary Islands (9). R. pusillus, a common ectoparasite (tick) that feeds on wild rabbits on the Iberian Peninsula, was also introduced this way. R. massiliae could have been introduced in the islands by infected R. pusillus ticks or by infected wild rabbits if this species serves as a natural reservoir host for the pathogen.

To find evidence for this hypothesis, we tested blood and liver samples of 150 wild rabbits from both Canary Islands and Andalucía (southern Spain) by using Rickettsia-specific PCR primers (Table). No R. massiliae DNA was detected in the rabbit samples tested, suggesting that the pathogen probably was introduced in the Canary Islands with infected R. pusillus ticks feeding on rabbits. Alternatively, R. massiliae infection levels in wild rabbits may be below the PCR detection limit and were not detected.

The Canary Islands are a popular tourist destination. The presence of R. massiliae in the islands constitutes a risk for human infection and should be considered in hospital diagnostic and wildlife management strategies. As with other Rhipicephalus spp., R. pusillus ticks could feed on humans under certain circumstances (10). Our results emphasize the risks associated with unsupervised animal translocations, a factor that probably plays a role in the introduction of ticks and tick-borne pathogens in different parts of the world.

Top

Acknowledgment

This research was supported by Fundación Canaria de Investigación y Salud (project 34/04) and the Consejeria de Educación y Ciencia de Castilla-La Mancha (project POII09-0141-8176).

Top

Isabel G. Fernández de Mera, Zorica Zivkovic, Margarita Bolaños, Cristina Carranza, José Luis Pérez-Arellano, Carlos Gutiérrez, and José de la FuenteComments to Author 
Author affiliations: Instituto de Investigación en Recursos Cinegéticos IREC (Consejo Superior de Investigaciones Cientificas–Universidad de Castilla-La Mancha–Junta de Comunidades de Castilla-La Mancha), Ciudad Real, Spain (I.G. Fernández de Mera, J. de la Fuente); Utrecht University, the Netherlands (Z. Zivkovic); Hospital Universitario Insular de Gran Canaria, Canary Islands, Spain (M. Bolaños, C. Carranza, J.L. Pérez-Arellano); Universidad de Las Palmas de Gran Canaria, Canary Islands (J.L. Pérez-Arellano, Carlos Gutiérez); Oklahoma State University, Stillwater, Oklahoma, USA (J. de la Fuente).

Top

References

  1. Vitale  G, Mansuelo  S, Rolain  JM, Raoult  D. Rickettsia massiliae human isolation. Emerg Infect Dis. 2006;12:1745.PubMedGoogle Scholar
  2. Nowak  RM. Walker’s mammals of the world. Baltimore: The Johns Hopkins University Press; 1991.
  3. Beati  L, Finidori  JP, Gilot  B, Raoult  D. Comparison of serologic typing, sodium dodecyl sulfate–polyacrylamide gel electrophoresis protein analysis, and genetic restriction fragment length polymorphism analysis for identification of rickettsiae: characterization of two new rickettsial strains. J Clin Microbiol. 1992;30:192230.PubMedGoogle Scholar
  4. Cardenosa  N, Segura  F, Raoult  D. Serosurvey among Mediterranean spotted fever patients of a new spotted fever group rickettsial strain (Bar29). Eur J Epidemiol. 2003;18:3516. DOIPubMedGoogle Scholar
  5. Beati  L, Raoult  L. Rickettsiae massiliae sp. nov., a new spotted fever group rickettsia. [PMID: 8240964]. Int J Syst Bacteriol. 1993;43:83940.PubMedGoogle Scholar
  6. Eremeeva  ME, Bosserman  EA, Demma  LJ, Zambrano  ML, Blau  DM, Dasch  GA. Isolation and identification of Rickettsia massiliae from Rhipicephalus sanguineus ticks collected in Arizona. Appl Environ Microbiol. 2006;72:556977. DOIPubMedGoogle Scholar
  7. Parola  P, Labruna  MB, Raoult  D. Tick-borne rickettsioses in America: unanswered questions and emerging diseases. Curr Infect Dis Rep. 2009;11:4050. DOIPubMedGoogle Scholar
  8. Marquez  FJ. Spotted fever group Rickettsia in ticks from southeastern Spain natural parks. Exp Appl Acarol. 2008;45:18594. DOIPubMedGoogle Scholar
  9. Foronda  PR, Figueruelo  EO, Ortego  AR, Abreu  NA, Casanova  JC. Parasites (viruses, coccidia and helminths) of the wild rabbit (Oryctolagus cuniculus) introduced to Canary Islands from Iberian Peninsula. Acta Parasitol. 2005;50:804.
  10. Parola  P, Socolovschi  C, Jeanjean  L, Bitam  I, Fournier  PE, Sotto  A, Warmer weather linked to tick attack and emergence of severe rickettsioses. PLoS Negl Trop Dis. 2008;2:e338. DOIPubMedGoogle Scholar

Top

Table

Top

Cite This Article

DOI: 10.3201/eid1511.090681

Related Links

Top

Table of Contents – Volume 15, Number 11—November 2009

EID Search Options
presentation_01 Advanced Article Search – Search articles by author and/or keyword.
presentation_01 Articles by Country Search – Search articles by the topic country.
presentation_01 Article Type Search – Search articles by article type and issue.

Top

Comments

Please use the form below to submit correspondence to the authors or contact them at the following address:

José de la Fuente, Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), 13005 Ciudad Real, Spain

Send To

10000 character(s) remaining.

Top

Page created: December 09, 2010
Page updated: December 09, 2010
Page reviewed: December 09, 2010
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external