Volume 19, Number 2—February 2013
Dispatch
Human Granulocytic Anaplasmosis, Japan
Table 1
Days after symptom onset† | Nested PCR result‡ |
|||
---|---|---|---|---|
SFG rickettsia 16S rDNA | Orientia tsutsugamushi 16S rDNA | Anaplasma phagocytophilum p44/msp2 | Ehrlichia sp. p28/omp-1 | |
Case-patient 1 | ||||
3 | Negative | Negative | Positive | Negative |
19 |
Negative |
Negative |
Negative |
Negative |
Case-patient 2 | ||||
4 | Positive | Negative | Positive | Negative |
11 | NA | NA | NA | NA |
*SFG, spotted fever group; NA, not available.
†After in-hospital treatment with minocycline (200 mg/d), both case-patients improved clinically and were discharged on days 20 and 12, respectively, after symptom onset.
‡Before being used in PCR, blood clots from the patients were homogenized by using BioMasher (Nippi Inc., Tokyo, Japan) and treated overnight with 100 U of streptokinase (WAKO Pure Chemical Industries Ltd, Osaka, Japan). DNA then was extracted by using the QIAamp DNA Mini Kit (QIAGEN, Valencia, CA, USA). Multiplex nested first-step PCR for SFG rickettsiae and O. tsutsugamushi was performed by using the following primers: RO-1F (5'-CCGTAAACGATGAGTGCTAGA-3') and RO-R1 (5'-CCGAGAACGTATTCACCGC-3'). Multiplex nested second-step PCR for SFG rickettsiae 16S rDNA was performed by using the following primers: R-2F (5'-GAAGATTCTCTTTCGGTTTCGC-3') and R-2R (5'-GTCTTGCTTCCCTCTGTAAAC-3'). Multiplex nested second-step PCR for O. tsutsugamushi 16S rDNA was performed by using the following primers: O-2F (5'-GACATGGTAGTCGCGAAAAATG-3') and O-2R (5'-TGCAATCCGAACTGAGATACC-3'). A. phagocytophilum p44/msp2 was amplified by using primers p3726, p4257, p3761, and p4183, and Ehrlichia spp. p28/omp-1 was amplified by using primers conP28-F1, conP28-R1, conP28-F2, and conP28-R2, as described (3,9).
References
- National Institute of Infectious Diseases, Ministry of Health, Labour and Welfare. IASR (Infectious Agents Surveillance Report). Scrub typhus and Japanese spotted fever in Japan, 2006–2011 [cited 2012 May 31]. http://idsc.nih.go.jp/iasr/31/363/tpc363.html
- Ando S, Kurosawa M, Sakata A, Fujita H, Sakai K, Sekine M, Human Rickettsia heilongjiangensis infection, Japan. Emerg Infect Dis. 2010;16:1306–8. DOIPubMedGoogle Scholar
- Ohashi N, Inayoshi M, Kitamura K, Kawamori F, Kawaguchi D, Nishimura Y, Anaplasma phagocytophilum–infected ticks, Japan. Emerg Infect Dis. 2005;11:1780–3. DOIPubMedGoogle Scholar
- Wuritu , Kawamori F, Aochi M, Masuda T, Ohashi N. Characterization of p44/msp2 multigene family of Anaplasma phagocytophilum from two different tick species, Ixodes persulcatus and Ixodes ovatus, in Japan. Jpn J Infect Dis. 2009;62:142–5.PubMedGoogle Scholar
- Wuritu , Ozawa Y, Gaowa , Kawamori F, Masuda T, Masuzawa T, Structural analysis of a p44/msp2 expression site of Anaplasma phagocytophilum in naturally infected ticks in Japan. J Med Microbiol. 2009;58:1638–44. DOIPubMedGoogle Scholar
- Kawahara M, Tajima T, Torii H, Yabutani M, Ishii J, Harasawa M, Ehrlichia chaffeensis infection of sika deer, Japan. Emerg Infect Dis. 2009;15:1991–3. DOIPubMedGoogle Scholar
- Gaowa , Wuritu , Wu D, Yoshikawa Y, Ohashi N, Kawamori F, Detection and characterization of p44/msp2 transcript variants of Anaplasma phagocytophilum from naturally infected ticks and wild deer in Japan. Jpn J Infect Dis. 2012;65:79–83.PubMedGoogle Scholar
- Gaowa , Aoch i M, Ohashi N, Wuritu , Wu D, Yoshikawa Y, Rickettsiae in Ticks, Japan, 2007–2011 [letter]. Emerg Infect Dis. 2013;19:338–40. DOIGoogle Scholar
- Inayoshi M, Naitou H, Kawamori F, Masuzawa T, Ohashi N. Characterization of Ehrlichia species from Ixodes ovatus ticks at the foot of Mt. Fuji, Japan. Microbiol Immunol. 2004;48:737–45 .PubMedGoogle Scholar
- Heo EJ, Park JH, Koo JR, Park MS, Park MY, Dumler JS, Serologic and molecular detection of Ehrlichia chaffeensis and Anaplasma phagocytophila (human granulocytic ehrlichiosis agent) in Korean patients. J Clin Microbiol. 2002;40:3082–5. DOIPubMedGoogle Scholar
- Zhi N, Ohashi N, Rikihisa Y, Horowitz HW, Wormser GP, Hechemy K. Cloning and expression of the 44-kilodalton major outer membrane protein gene of the human granulocytic ehrlichiosis agent and application of the recombinant protein to serodiagnosis. J Clin Microbiol. 1998;36:1666–73 .PubMedGoogle Scholar
- Ohashi N, Zhi N, Zhang Y, Rikihisa Y. Immunodominant major outer membrane proteins of Ehrlichia chaffeensis are encoded by a polymorphic multigene family. Infect Immun. 1998;66:132–9 .PubMedGoogle Scholar
- Mahara F. Japanese spotted fever: report of 31 cases and review of the literature. Emerg Infect Dis. 1997;3:105–11. DOIPubMedGoogle Scholar
- Lin M, Kikuchi T, Brewer HM, Norbeck AD, Rikihisa Y. Global proteomic analysis of two tick-borne emerging zoonotic agents: Anaplasma phagocytophilum and Ehrlichia chaffeensis. Front Microbiol. 2011;2:24. Epub 2011 Feb 17. DOIGoogle Scholar
1These authors contributed equally to this article.
2Current affiliation: Ehime Prefectural Central Hospital, Matsuyama, Ehime, Japan.
3Current affiliation: Kochi Medical School, Nankoku, Kochi, Japan.