Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 20, Number 12—December 2014
Research

Geographic Divergence of Bovine and Human Shiga Toxin–Producing Escherichia coli O157:H7 Genotypes, New Zealand1

Patricia JarosComments to Author , Adrian L. Cookson, Donald M. Campbell, Gail E. Duncan, Deborah Prattley, Philip E. Carter, Thomas E. Besser, Smriti Shringi, Steve Hathaway, Jonathan C. Marshall, and Nigel P. French
Author affiliations: Massey University, Palmerston North, New Zealand (P. Jaros, D. Prattley, J.C. Marshall, N.P. French); AgResearch Ltd, Palmerston North (A.L. Cookson); Ministry for Primary Industries, Wellington, New Zealand (D.M. Campbell, G.E. Duncan, S. Hathaway); Institute of Environmental Science and Research Ltd, Porirua, New Zealand (P. Carter); Washington State University, Pullman, Washington, USA (T.E. Besser, S. Shringi)

Main Article

Figure 5

NeighborNet (16) tree showing geographic divergence of bovine and human Shiga toxin–producing Escherichia coli O157:H7 isolates sourced from New Zealand (40 cattle, 363 human), Australia (205 cattle, 79 human), and the United States (US) (143 cattle, 179 human). The distance indicates the difference in proportional similarity of Shiga toxin–encoding bacteriophage insertion types among the isolates.

Figure 5. NeighborNet (16) tree showing geographic divergence of bovine and human Shiga toxin–producing Escherichia coli O157:H7 isolates sourced from New Zealand (40 cattle, 363 human), Australia (205 cattle, 79 human), and the United States (US) (143 cattle, 179 human). The distance indicates the difference in proportional similarity of Shiga toxin–encoding bacteriophage insertion types among the isolates.

Main Article

References
  1. Karmali  M, Petric  M, Steele  BT, Lim  C. Sporadic cases of haemolytic-uraemic syndrome associated with faecal cytotoxin and cytotoxin-producing Escherichia coli in stools. Lancet. 1983;321:61920. DOIPubMedGoogle Scholar
  2. Riley  LW, Remis  RS, Helgerson  SD, McGee  HB, Wells  JG, Davis  BR, Hemorrhagic colitis associated with a rare Escherichia coli serotype. N Engl J Med. 1983;308:6815. DOIPubMedGoogle Scholar
  3. Griffin  PM, Tauxe  RV. The epidemiology of infections caused by Escherichia coli O157:H7, other enterohemorrhagic E. coli and the associated hemolytic uremic syndrome. Epidemiol Rev. 1991;13:6098 .PubMedGoogle Scholar
  4. Institute of Environmental Science and Research Ltd. Surveillance report. Notifiable and other diseases in New Zealand: annual report 2012 [cited 2013 Sep 10]. https://surv.esr.cri.nz/surveillance/annual_surveillance.php?we_objectID=3565.
  5. Binney  B, Biggs  PJ, Carter  PE, Holland  BR, French  NP. Quantification of historical livestock importation into New Zealand [cited 2014 Jun 15]. N Z Vet J. 2014. Epub 2014 May 28
  6. Davis  MA, Hancock  DD, Besser  TE, Call  DR. Evaluation of pulsed-field gel electrophoresis as a tool for determining the degree of genetic relatedness between strains of Escherichia coli O157:H7. J Clin Microbiol. 2003;41:18439. DOIPubMedGoogle Scholar
  7. Institute of Environmental Science and Research Ltd. Public Health Surveillance. VTEC isolates [cited 2013 Dec 28]. https://surv.esr.cri.nz/enteric_reference/vtec_isolates.php
  8. Irshad  H, Cookson  AL, Hotter  G, Besser  TE, On  SLW, French  NP. Epidemiology of Shiga toxin-producing Escherichia coli O157 in very young calves in the North Island of New Zealand. N Z Vet J. 2012;60:216. DOIPubMedGoogle Scholar
  9. Jaros  P, Cookson  AL, Prattley  DJ, Campbell  DM, Hathaway  S, French  NP. Shedding of Escherichia coli O157:H7 and O26 STEC by slaughter cattle in New Zealand. In: Abstracts of the annual meeting of the New Zealand Microbiological Society; Palmerston North, New Zealand; 2011 Nov 23–25. New Zealand Microbiological Society; 2011. p. 86.
  10. Paton  AW, Paton  JC. Detection and characterization of Shiga toxigenic Escherichia coli by using multiplex PCR assays for stx1, stx2, eaeA, enterohemorrhagic E. coli hlyA, rfbO111, and rfbO157. J Clin Microbiol. 1998;36:598602 .PubMedGoogle Scholar
  11. Sharma  VK, Dean-Nystrom  EA. Detection of enterohemorrhagic Escherichia coli O157:H7 by using a multiplex real-time PCR assay for genes encoding intimin and Shiga toxins. Vet Microbiol. 2003;93:24760. DOIPubMedGoogle Scholar
  12. Shringi  S, Schmidt  C, Katherine  K, Brayton  KA, Hancock  DD, Besser  TE. Carriage of stx2a differentiates clinical and bovine-biased strains of Escherichia coli O157. PLoS ONE. 2012;7:e51572. DOIPubMedGoogle Scholar
  13. Besser  TE, Shaikh  N, Holt  NJ, Tarr  PI, Konkel  ME, Malik-Kale  P, Greater diversity of Shiga toxin–encoding bacteriophage insertion sites among Escherichia coli O157:H7 isolates from cattle than in those from humans. Appl Environ Microbiol. 2007;73:6719. DOIPubMedGoogle Scholar
  14. Jung  WK, Bono  JL, Clawson  ML, Leopold  SR, Shringi  S, Besser  TE. Lineage and genogroup-defining single nucleotide polymorphisms of Escherichia coli O157:H7. Appl Environ Microbiol. 2013;79:703641. DOIPubMedGoogle Scholar
  15. PulseNet International. Molecular typing, PFGE protocols [cited 2013 Dec 28]. http://www.pulsenetinternational.org/protocols/
  16. Huson  DH, Bryant  D. Application of phylogenetic networks in evolutionary studies. Mol Biol Evol. 2006;23:25467. DOIPubMedGoogle Scholar
  17. Mellor  GE, Besser  TE, Davis  MA, Beavis  B, Jung  W, Smith  HV, Multilocus genotype analysis of Escherichia coli O157 isolates from Australia and the United States provides evidence of geographic divergence. Appl Environ Microbiol. 2013;79:50508. DOIPubMedGoogle Scholar
  18. Feinsinger  P, Spears  EE, Poole  RW. A simple measure of niche breadth. Ecology. 1981;62:2732. DOIGoogle Scholar
  19. Efron  B, Tibshirani  R. Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. Stat Sci. 1986;1:5475. DOIGoogle Scholar
  20. Jaros  P, Cookson  A, Campbell  D, Besser  T, Shringi  S, Mackereth  G, A prospective case-control and molecular epidemiological study of human cases of Shiga toxin–producing Escherichia coli in New Zealand. BMC Infect Dis. 2013;13:450. DOIPubMedGoogle Scholar
  21. Statistics New Zealand. Infoshare [cited 2013 Dec 20]. http://www.stats.govt.nz/infoshare/
  22. NAIT–National animal identification and tracing [cited 2013 Sep 6]. http://www.nait.co.nz/
  23. Clark  RG, Fenwick  SG, Nicol  CM, Marchant  RM, Swanney  S, Gill  JM, Salmonella Brandenburg–emergence of a new strain affecting stock and humans in the South Island of New Zealand. N Z Vet J. 2004;52:2636. DOIPubMedGoogle Scholar
  24. Alley  MR, Connolly  JH, Fenwick  SG, Mackereth  GF, Leyland  MJ, Rogers  LE, An epidemic of salmonellosis caused by Salmonella Typhimurium DT160 in wild birds and humans in New Zealand. N Z Vet J. 2002;50:1706. DOIPubMedGoogle Scholar
  25. Kudva  IT, Hatfield  PG, Hovde  CJ. Escherichia coli O157:H7 in microbial flora of sheep. J Clin Microbiol. 1996;34:4313 .PubMedGoogle Scholar
  26. Paiba  GA, Pascoe  SJS, Wilesmith  JW, Kidd  SA, Byrne  C, Ryan  JBM, Faecal carriage of verocytotoxin-producing Escherichia coli O157 in cattle and sheep at slaughter in Great Britain. Vet Rec. 2002;150:5938. DOIPubMedGoogle Scholar
  27. Oporto  B, Esteban  JI, Aduriz  G, Juste  RA, Hurtado  A. Escherichia coli O157:H7 and non-O157 Shiga toxin–producing E. coli in healthy cattle, sheep and swine herds in northern Spain. Zoonoses Public Health. 2008;55:7381. DOIPubMedGoogle Scholar
  28. Renter  DG, Sargeant  JM, Hygnstorm  SE, Hoffman  JD, Gillespie  JR. Escherichia coli O157:H7 in free-ranging deer in Nebraska. J Wildl Dis. 2001;37:75560 . DOIPubMedGoogle Scholar
  29. Mora  A, López  C, Dhabi  G, López-Beceiro  AM, Fidalgo  L, Díaz  EA, Seropathotypes, phylogroups, Stx subtypes and intimin types of wildlife-carried, Shiga toxin–producing Escherichia coli strains with the same characteristics as human-pathogenic isolates. Appl Environ Microbiol. 2012;78:257885. DOIPubMedGoogle Scholar
  30. Cookson  AL, Taylor  SCS, Bennett  J, Thomson-Carter  F, Attwood  GT. Serotypes and analysis of distribution of Shiga toxin–producing Escherichia coli from cattle and sheep in the lower North Island, New Zealand. N Z Vet J. 2006;54:7884. DOIPubMedGoogle Scholar
  31. Cookson  AL, Taylor  SCS, Attwood  GT. The prevalence of Shiga toxin–producing Escherichia coli in cattle and sheep in the lower North Island, New Zealand. N Z Vet J. 2006;54:2833. DOIPubMedGoogle Scholar
  32. Lloyd-Smith  JO, George  D, Pepin  KM, Pitzer  VE, Pulliam  JR, Dobson  AP, Epidemic dynamics at the human–animal interface. Science. 2009;326:13627. DOIPubMedGoogle Scholar
  33. Swirski  AL, Pearl  DL, Williams  ML, Homan  HJ, Linz  GM, Cernicchiaro  N, Spatial epidemiology of Escherichia coli O157:H7 in dairy cattle in relation to night roosts of Sturnus vulgaris (European starling) in Ohio, USA (2007–2009). Zoonoses Public Health. 2014;61:42735. DOIPubMedGoogle Scholar
  34. Williams  ML, Pearl  DL, LeJeune  JT. Multiple-locus variable-nucleotide tandem repeat subtype analysis implicates European starlings as biological vectors for Escherichia coli O157:H7 in Ohio, USA. J Appl Microbiol. 2011;111:9828 . DOIPubMedGoogle Scholar

Main Article

1Preliminary results from this study were presented at the New Zealand Veterinary Association Conference; June 16–20, 2014, Hamilton, New Zealand.

Page created: November 18, 2014
Page updated: November 18, 2014
Page reviewed: November 18, 2014
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external