Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 21, Number 12—December 2015
CME ACTIVITY - Dispatch

Life-Threatening Sochi Virus Infections, Russia

Detlev H. KrugerComments to Author , Evgeniy A. Tkachenko, Vyacheslav G. Morozov, Yulia V. Yunicheva, Olga M. Pilikova, Gennadiy Malkin, Aydar A. Ishmukhametov, Patrick Heinemann, Peter T. Witkowski, Boris Klempa, and Tamara K. Dzagurova
Author affiliations: Charité School of Medicine, Berlin, Germany (D.H. Kruger, P. Heinemann, P.T. Witkowski, B. Klempa); Chumakov Institute of Poliomyelitis and Viral Encephalitides, Moscow, Russia (E.A. Tkachenko, G. Malkin, A.A. Ishmukhametov, T.K. Dzagurova); Medical State University, Samara, Russia (V.G. Morozov); Anti-Plague Stations, Sochi, Russia (Y.V. Yunicheva); Anti-Plague Stations, Novorossiysk, Russia (O.M. Pilikova); Slovak Academy of Sciences, Bratislava, Slovakia (B. Klempa)

Main Article

Figure 1

Phylogenetic analysis segment sequences of Sochi virus, Russia: A) 347-bp large (L) segment sequence; B) 1,197-bp small (S) segment sequence. Virus sequences derived from patients (shown in bold type) and Apodemus ponticus mice cluster within the Sochi genotype of DOBV. Evolutionary analysis was conducted in MEGA6 (6). The evolutionary history was inferred by using the maximum-likelihood method based on the Tamura 3-parameter model with a discrete gamma distribution and 5 rate categories (analys

Figure 1. Phylogenetic analysis segment sequences of Sochi virus, Russia: A) 347-bp large (L) segment sequence; B) 1,197-bp small (S) segment sequence. Virus sequences derived from patients (shown in bold type) and Apodemus ponticus mice cluster within the Sochi genotype of DOBV. Evolutionary analysis was conducted in MEGA6 (6). The evolutionary history was inferred by using the maximum-likelihood method based on the Tamura 3-parameter model with a discrete gamma distribution and 5 rate categories (analysis in panel A) and on the general time reversible model with gamma rates and heterogeneous patterns (analysis in panel B), respectively, which were estimated to be the best-fit substitution model according to the Bayesian information criterion. Scale bars indicate an evolutionary distance of 0.1 substitutions per position in the sequence. Bootstrap values >70%, calculated from 500 replicates, are shown at the tree branches. GenBank accession numbers of all sequences used in the analysis are listed in Technical Appendix Table 1). Dark gray shading iindicates cluster of DOBV-Sochi strains; light gray shading indicates different clusters of strains from other DOBV genotypes. ANDV, Andes virus; DOBV, Dobrava-Belgrade virus; HTNV, Hantaan virus; PUUV, Puumala virus; SANGV, Sangassou virus; SEOV, Seoul virus; SNV, Sin Nombre virus; THAIV, Thailand virus; TULV, Tula virus.

Main Article

References
  1. Kruger  DH, Figueiredo  LTM, Song  JW, Klempa  B. Hantaviruses—globally emerging pathogens. J Clin Virol. 2015;64:12836. DOIPubMedGoogle Scholar
  2. Tkachenko  EA, Okulova  NM, Yunicheva  YV, Morzunov  SP, Khaĭbulina  SF, Riabova  TE, The epizootological and virological characteristics of a natural hantavirus infection focus in the subtropic zone of the Krasnodarsk Territory [in Russian]. Vopr Virusol. 2005;50:149 .PubMedGoogle Scholar
  3. Klempa  B, Tkachenko  EA, Dzagurova  TK, Yunicheva  YV, Morozov  VG, Okulova  NM, Hemorrhagic fever with renal syndrome caused by 2 lineages of Dobrava hantavirus, Russia. Emerg Infect Dis. 2008;14:61725. DOIPubMedGoogle Scholar
  4. Dzagurova  TK, Witkowski  PT, Tkachenko  EA, Klempa  B, Morozov  VG, Auste  B, Isolation of Sochi virus from a fatal case of hantavirus disease with fulminant clinical course. Clin Infect Dis. 2012;54:e14. DOIPubMedGoogle Scholar
  5. Klempa  B, Avsic-Zupanc  T, Clement  J, Dzagurova  TK, Henttonen  H, Heyman  P, Complex evolution and epidemiology of Dobrava-Belgrade hantavirus: definition of genotypes and their characteristics. Arch Virol. 2013;158:5219. DOIPubMedGoogle Scholar
  6. Tamura  K, Stecher  G, Peterson  D, Filipski  A, Kumar  S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013;30:27259. DOIPubMedGoogle Scholar
  7. Kramski  M, Meisel  H, Klempa  B, Krüger  DH, Pauli  G, Nitsche  A. Detection and typing of human pathogenic hantaviruses by real-time reverse transcription–PCR and pyrosequencing. Clin Chem. 2007;53:1899905. DOIPubMedGoogle Scholar
  8. Okulova  NM, Khliap  LA, Varshavskii  AA, Dzagurova  TK, Iunicheva  IV, Riabova  TE, Spatial structure of natural foci of hantavirus on the territory of northwestern Caucasus [in Russian]. Zh Mikrobiol Epidemiol Immunobiol. 2013; (Sep–Oct):4753 .PubMedGoogle Scholar
  9. Mertz  GJ, Hjelle  B, Crowley  M, Iwamoto  G, Tomicic  V, Vial  PA. Diagnosis and treatment of new world hantavirus infections. Curr Opin Infect Dis. 2006;19:43742. DOIPubMedGoogle Scholar
  10. Zhang  YZ, Zou  Y, Fu  ZF, Plyusnin  A. Hantavirus infections in humans and animals, China. Emerg Infect Dis. 2010;16:1195203. DOIPubMedGoogle Scholar
  11. Noh  JY, Cheong  HJ, Song  JY, Kim  WJ, Song  KJ, Klein  TA, Clinical and molecular epidemiological features of hemorrhagic fever with renal syndrome in Korea over a 10-year period. J Clin Virol. 2013;58:117. DOIPubMedGoogle Scholar
  12. Avsic-Zupanc  T, Petrovec  M, Furlan  P, Kaps  R, Elgh  F, Lundkvist  A. Hemorrhagic fever with renal syndrome in the Dolenjska region of Slovenia—a 10-year survey. Clin Infect Dis. 1999;28:8605. DOIPubMedGoogle Scholar
  13. Papa  A, Antoniadis  A. Hantavirus infections in Greece—an update. Eur J Epidemiol. 2001;17:18994 . DOIPubMedGoogle Scholar
  14. Dzagurova  TK, Klempa  B, Tkachenko  EA, Slyusareva  GP, Morozov  VG, Auste  B, Molecular diagnostics of hemorrhagic fever with renal syndrome during a Dobrava virus infection outbreak in the European part of Russia. J Clin Microbiol. 2009;47:402936 . DOIPubMedGoogle Scholar

Main Article

Page created: November 13, 2015
Page updated: November 13, 2015
Page reviewed: November 13, 2015
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external