Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 21, Number 12—December 2015
CME ACTIVITY - Dispatch

Life-Threatening Sochi Virus Infections, Russia

Detlev H. KrugerComments to Author , Evgeniy A. Tkachenko, Vyacheslav G. Morozov, Yulia V. Yunicheva, Olga M. Pilikova, Gennadiy Malkin, Aydar A. Ishmukhametov, Patrick Heinemann, Peter T. Witkowski, Boris Klempa, and Tamara K. Dzagurova
Author affiliations: Charité School of Medicine, Berlin, Germany (D.H. Kruger, P. Heinemann, P.T. Witkowski, B. Klempa); Chumakov Institute of Poliomyelitis and Viral Encephalitides, Moscow, Russia (E.A. Tkachenko, G. Malkin, A.A. Ishmukhametov, T.K. Dzagurova); Medical State University, Samara, Russia (V.G. Morozov); Anti-Plague Stations, Sochi, Russia (Y.V. Yunicheva); Anti-Plague Stations, Novorossiysk, Russia (O.M. Pilikova); Slovak Academy of Sciences, Bratislava, Slovakia (B. Klempa)

Main Article

Figure 2

Quantification of hantavirus RNA in tissue biopsies from a 50-year-old Sochi virus–infected man (patient no. 59), Russia. Two independent approaches were performed to extract RNA from each organ. Quantitative reverse transcription PCR previously developed for DOBV (7) was used to measure virus load in the analyzed biopsy samples. Three quantitative reverse transcription PCR estimations were conducted for every RNA extraction, followed by calculation of mean values and SDs. Viral RNA levels are s

Figure 2. Quantification of hantavirus RNA in tissue biopsies from a 50-year-old Sochi virus–infected man (patient no. 59), Russia. Two independent approaches were performed to extract RNA from each organ. Quantitative reverse transcription PCR previously developed for DOBV (7) was used to measure virus load in the analyzed biopsy samples. Three quantitative reverse transcription PCR estimations were conducted for every RNA extraction, followed by calculation of mean values and SDs. Viral RNA levels are shown as genome copies per nanogram of total RNA isolated from the samples. Error bars indicate SD.

Main Article

References
  1. Kruger  DH, Figueiredo  LTM, Song  JW, Klempa  B. Hantaviruses—globally emerging pathogens. J Clin Virol. 2015;64:12836. DOIPubMedGoogle Scholar
  2. Tkachenko  EA, Okulova  NM, Yunicheva  YV, Morzunov  SP, Khaĭbulina  SF, Riabova  TE, The epizootological and virological characteristics of a natural hantavirus infection focus in the subtropic zone of the Krasnodarsk Territory [in Russian]. Vopr Virusol. 2005;50:149 .PubMedGoogle Scholar
  3. Klempa  B, Tkachenko  EA, Dzagurova  TK, Yunicheva  YV, Morozov  VG, Okulova  NM, Hemorrhagic fever with renal syndrome caused by 2 lineages of Dobrava hantavirus, Russia. Emerg Infect Dis. 2008;14:61725. DOIPubMedGoogle Scholar
  4. Dzagurova  TK, Witkowski  PT, Tkachenko  EA, Klempa  B, Morozov  VG, Auste  B, Isolation of Sochi virus from a fatal case of hantavirus disease with fulminant clinical course. Clin Infect Dis. 2012;54:e14. DOIPubMedGoogle Scholar
  5. Klempa  B, Avsic-Zupanc  T, Clement  J, Dzagurova  TK, Henttonen  H, Heyman  P, Complex evolution and epidemiology of Dobrava-Belgrade hantavirus: definition of genotypes and their characteristics. Arch Virol. 2013;158:5219. DOIPubMedGoogle Scholar
  6. Tamura  K, Stecher  G, Peterson  D, Filipski  A, Kumar  S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013;30:27259. DOIPubMedGoogle Scholar
  7. Kramski  M, Meisel  H, Klempa  B, Krüger  DH, Pauli  G, Nitsche  A. Detection and typing of human pathogenic hantaviruses by real-time reverse transcription–PCR and pyrosequencing. Clin Chem. 2007;53:1899905. DOIPubMedGoogle Scholar
  8. Okulova  NM, Khliap  LA, Varshavskii  AA, Dzagurova  TK, Iunicheva  IV, Riabova  TE, Spatial structure of natural foci of hantavirus on the territory of northwestern Caucasus [in Russian]. Zh Mikrobiol Epidemiol Immunobiol. 2013; (Sep–Oct):4753 .PubMedGoogle Scholar
  9. Mertz  GJ, Hjelle  B, Crowley  M, Iwamoto  G, Tomicic  V, Vial  PA. Diagnosis and treatment of new world hantavirus infections. Curr Opin Infect Dis. 2006;19:43742. DOIPubMedGoogle Scholar
  10. Zhang  YZ, Zou  Y, Fu  ZF, Plyusnin  A. Hantavirus infections in humans and animals, China. Emerg Infect Dis. 2010;16:1195203. DOIPubMedGoogle Scholar
  11. Noh  JY, Cheong  HJ, Song  JY, Kim  WJ, Song  KJ, Klein  TA, Clinical and molecular epidemiological features of hemorrhagic fever with renal syndrome in Korea over a 10-year period. J Clin Virol. 2013;58:117. DOIPubMedGoogle Scholar
  12. Avsic-Zupanc  T, Petrovec  M, Furlan  P, Kaps  R, Elgh  F, Lundkvist  A. Hemorrhagic fever with renal syndrome in the Dolenjska region of Slovenia—a 10-year survey. Clin Infect Dis. 1999;28:8605. DOIPubMedGoogle Scholar
  13. Papa  A, Antoniadis  A. Hantavirus infections in Greece—an update. Eur J Epidemiol. 2001;17:18994 . DOIPubMedGoogle Scholar
  14. Dzagurova  TK, Klempa  B, Tkachenko  EA, Slyusareva  GP, Morozov  VG, Auste  B, Molecular diagnostics of hemorrhagic fever with renal syndrome during a Dobrava virus infection outbreak in the European part of Russia. J Clin Microbiol. 2009;47:402936 . DOIPubMedGoogle Scholar

Main Article

Page created: November 13, 2015
Page updated: November 13, 2015
Page reviewed: November 13, 2015
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external