Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 21, Number 3—March 2015
Research

Nanomicroarray and Multiplex Next-Generation Sequencing for Simultaneous Identification and Characterization of Influenza Viruses

Jiangqin ZhaoComments to Author , Viswanath Ragupathy, Jikun Liu, Xue Wang, Sai Vikram Vemula, Haja Sittana El Mubarak, Zhiping Ye, Marie L. Landry, and Indira HewlettComments to Author 
Author affiliations: Food and Drug Administration, Silver Spring, Maryland, USA (J. Zhao, V. Ragupathy, J. Liu, X. Wang, S.V. Vemula, H.S. El Mubarak, Z. Ye, I. Hewlett); Yale University School of Medicine, New Haven, Connecticut, USA (M.L. Landry)

Main Article

Figure 3

Phylogenetic analysis of the matrix (M) gene sequences obtained from nasopharyngeal swab samples from patients who had received a diagnosis of influenza in Connecticut, USA, during the 2012–13 influenza season (see Table 1). Analysis was performed by using the neighbor-joining module in MEGA (29) with the Kimura 2-parameter method. The reference subtypes were fetched from the Influenza Research Database (http://www.fludb.org) and used to construct the tree. Bootstrap values >70% are shown. Th

Figure 3. Phylogenetic analysis of the matrix (M) gene sequences obtained from nasopharyngeal swab samples from patients who had received a diagnosis of influenza in Connecticut, USA, during the 2012–13 influenza season (see Table 1). Analysis was performed by using the neighbor-joining module in MEGA (29) with the Kimura 2-parameter method. The reference subtypes were fetched from the Influenza Research Database (http://www.fludb.org) and used to construct the tree. Bootstrap values >70% are shown. The M genes identified in this study are indicated by black circles; reference M genes are indicated by black squares for influenza A(H3N2)v and black triangles for pandemic influenza A(H1N1) 2009 (pH1N1) virus. Scale bar indicates 2% genetic distance.

Main Article

References
  1. Webster  RG, Bean  WJ, Gorman  OT, Chambers  TM, Kawaoka  Y. Evolution and ecology of influenza A viruses. Microbiol Rev. 1992;56:15279 .PubMedGoogle Scholar
  2. Röhm  C, Zhou  N, Suss  J, Mackenzie  J, Webster  RG. Characterization of a novel influenza hemagglutinin, H15: criteria for determination of influenza A subtypes. Virology. 1996;217:50816. DOIPubMedGoogle Scholar
  3. Fouchier  RA, Munster  V, Wallensten  A, Bestebroer  TM, Herfst  S, Smith  D, Characterization of a novel influenza A virus hemagglutinin subtype (H16) obtained from black-headed gulls. J Virol. 2005;79:281422. DOIPubMedGoogle Scholar
  4. Tong  S, Zhu  X, Li  Y, New world bats harbor diverse influenza A viruses. PLoS Pathog. 2013;9:e1003657. DOIPubMedGoogle Scholar
  5. Horimoto  T, Kawaoka  Y. Pandemic threat posed by avian influenza A viruses. Clin Microbiol Rev. 2001;14:12949. DOIPubMedGoogle Scholar
  6. Hilleman  MR. Realities and enigmas of human viral influenza: pathogenesis, epidemiology and control. Vaccine. 2002;20:306887. DOIPubMedGoogle Scholar
  7. Gao  R, Cao  B, Hu  Y, Feng  Z, Wang  D, Hu  W, Human infection with a novel avian-origin influenza A (H7N9) virus. N Engl J Med. 2013;368:188897. DOIPubMedGoogle Scholar
  8. Arzey  GG, Kirkland  PD, Arzey  KE, Frost  M, Maywood  P, Conaty  S, Influenza virus A (H10N7) in chickens and poultry abattoir workers, Australia. Emerg Infect Dis. 2012;18:8146. DOIPubMedGoogle Scholar
  9. Cheng  VC, Chan  JF, Wen  X, Wu  WL, Que  TL, Chen  H, Infection of immunocompromised patients by avian H9N2 influenza A virus. J Infect. 2011;62:3949. DOIPubMedGoogle Scholar
  10. Koopmans  M, Wilbrink  B, Conyn  M, Natrop  G, van der Nat  H, Vennema  H, Transmission of H7N7 avian influenza A virus to human beings during a large outbreak in commercial poultry farms in the Netherlands. Lancet. 2004;363:58793. DOIPubMedGoogle Scholar
  11. Ostrowsky  B, Huang  A, Terry  W, Anton  D, Brunagel  B, Traynor  L, Low pathogenic avian influenza A (H7N2) virus infection in immunocompromised adult, New York, USA, 2003. Emerg Infect Dis. 2012;18:112831. DOIPubMedGoogle Scholar
  12. Tweed  SA, Skowronski  DM, David  ST, Larder  A, Petric  M, Lees  W, Human illness from avian influenza H7N3, British Columbia. Emerg Infect Dis. 2004;10:21969. DOIPubMedGoogle Scholar
  13. Pabbaraju  K, Tellier  R, Wong  S, Li  Y, Bastien  N, Tang  JW, Full-genome analysis of avian influenza A(H5N1) virus from a human, North America, 2013. Emerg Infect Dis. 2014;20:88791. DOIPubMedGoogle Scholar
  14. Gallaher  WR. Towards a sane and rational approach to management of influenza H1N1 2009. Virol J. 2009;6:51. DOIPubMedGoogle Scholar
  15. Vijaykrishna  D, Poon  LL, Zhu  HC, Ma  SK, Li  OT, Cheung  CL, Reassortment of pandemic H1N1/2009 influenza A virus in swine. Science. 2010;328:1529. DOIPubMedGoogle Scholar
  16. Smith  GJ, Vijaykrishna  D, Bahl  J, Lycett  SJ, Worobey  M, Pybus  OG, Origins and evolutionary genomics of the 2009 swine-origin H1N1 influenza A epidemic. Nature. 2009;459:11225. DOIPubMedGoogle Scholar
  17. Garten  RJ, Davis  CT, Russell  CA, Shu  B, Lindstrom  S, Balish  A, Antigenic and genetic characteristics of swine-origin 2009 A(H1N1) influenza viruses circulating in humans. Science. 2009;325:197201. DOIPubMedGoogle Scholar
  18. Lindstrom  S, Garten  R, Balish  A, Shu  B, Emery  S, Berman  L, Human infections with novel reassortant influenza A(H3N2)v viruses, United States, 2011. Emerg Infect Dis. 2012;18:8347. DOIPubMedGoogle Scholar
  19. Nelson  MI, Vincent  AL, Kitikoon  P, Holmes  EC, Gramer  MR. Evolution of novel reassortant A/H3N2 influenza viruses in North American swine and humans, 2009–2011. J Virol. 2012;86:88728. DOIPubMedGoogle Scholar
  20. Kitikoon  P, Vincent  AL, Gauger  PC, Schlink  SN, Bayles  DO, Gramer  MR, Pathogenicity and transmission in pigs of the novel A(H3N2)v influenza virus isolated from humans and characterization of swine H3N2 viruses isolated in 2010–2011. J Virol. 2012;86:680414. DOIPubMedGoogle Scholar
  21. Webby  RJ, Webster  RG. Emergence of influenza A viruses. Philos Trans R Soc Lond B Biol Sci. 2001;356:181728. DOIPubMedGoogle Scholar
  22. Chang  SY, Lin  PH, Tsai  JC, Hung  CC, Chang  SC. The first case of H7N9 influenza in Taiwan. Lancet. 2013;381:1621. DOIPubMedGoogle Scholar
  23. Zhao  J, Wang  X, Ragupathy  V, Zhang  P, Tang  W, Ye  Z, Rapid detection and differentiation of swine-origin influenza a virus (H1N1/2009) from other seasonal influenza A viruses. Viruses. 2012;4:30129. DOIPubMedGoogle Scholar
  24. Zhao  J, Tang  S, Storhoff  J, Marla  S, Bao  YP, Wang  X, Multiplexed, rapid detection of H5N1 using a PCR-free nanoparticle-based genomic microarray assay. BMC Biotechnol. 2010;10:74. DOIPubMedGoogle Scholar
  25. Landry  ML, Ferguson  D. Cytospin-enhanced immunofluorescence and impact of sample quality on detection of novel swine origin (H1N1) influenza virus. J Clin Microbiol. 2010;48:9579. DOIPubMedGoogle Scholar
  26. Zhou  B, Donnelly  ME, Scholes  DT, St George  K, Hatta  M, Kawaoka  Y, Single-reaction genomic amplification accelerates sequencing and vaccine production for classical and swine origin human influenza a viruses. J Virol. 2009;83:1030913. DOIPubMedGoogle Scholar
  27. Hoffmann  E, Stech  J, Guan  Y, Webster  RG, Perez  DR. Universal primer set for the full-length amplification of all influenza A viruses. Arch Virol. 2001;146:227589. DOIPubMedGoogle Scholar
  28. Treangen  TJ, Salzberg  SL. Repetitive DNA and next-generation sequencing: computational challenges and solutions. Nat Rev Genet. 2012;13:3646.PubMedGoogle Scholar
  29. Tamura  K, Dudley  J, Nei  M, Kumar  S. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol. 2007;24:15969. DOIPubMedGoogle Scholar
  30. Chen  Y, Liang  W, Yang  S, Wu  N, Gao  H, Sheng  J, Human infections with the emerging avian influenza A H7N9 virus from wet market poultry: clinical analysis and characterisation of viral genome. Lancet. 2013;381:191625. DOIPubMedGoogle Scholar
  31. Yurovsky  A, Moret  BM. FluReF, an automated flu virus reassortment finder based on phylogenetic trees. BMC Genomics. 2011;12(Suppl 2):S3. DOIPubMedGoogle Scholar
  32. Rabadan  R, Levine  AJ, Krasnitz  M. Non-random reassortment in human influenza A viruses. Influenza Other Respir Viruses. 2008;2:9–22.
  33. Lun  AT, Wong  JW, Downard  KM. FluShuffle and FluResort: new algorithms to identify reassorted strains of the influenza virus by mass spectrometry. BMC Bioinformatics. 2012;13:208. DOIPubMedGoogle Scholar
  34. Jonges  M, Meijer  A, Fouchier  RA, Koch  G, Li  J, Pan  JC, Guiding outbreak management by the use of influenza A(H7Nx) virus sequence analysis. Euro Surveill. 2013;18:20460 .PubMedGoogle Scholar
  35. Munster  VJ, de Wit  E, van Riel  D, Beyer  WE, Rimmelzwaan  GF, Osterhaus  AD, The molecular basis of the pathogenicity of the Dutch highly pathogenic human influenza A H7N7 viruses. J Infect Dis. 2007;196:25865. DOIPubMedGoogle Scholar
  36. Mok  CK, Lee  HH, Lestra  M, Nicholls  JM, Chan  MC, Sia  SF, Amino acid substitutions in polymerase basic protein 2 gene contribute to the pathogenicity of the novel A/H7N9 influenza virus in mammalian hosts. J Virol. 2014;88:356876. DOIPubMedGoogle Scholar
  37. Hatta  M, Gao  P, Halfmann  P, Kawaoka  Y. Molecular basis for high virulence of Hong Kong H5N1 influenza A viruses. Science. 2001;293:18402. DOIPubMedGoogle Scholar
  38. Zaraket  H, Saito  R, Suzuki  Y, Suzuki  Y, Caperig-Dapat  I, Dapat  C, Genomic events contributing to the high prevalence of amantadine-resistant influenza A/H3N2. Antivir Ther. 2010;15:30719. DOIPubMedGoogle Scholar
  39. Liu  Q, Lu  L, Sun  Z, Chen  GW, Wen  Y, Jiang  S. Genomic signature and protein sequence analysis of a novel influenza A (H7N9) virus that causes an outbreak in humans in China. Microbes Infect. 2013;15:4329. DOIPubMedGoogle Scholar
  40. Chen  Y, Liang  W, Yang  S, Wu  N, Gao  H, Sheng  J, Human infections with the emerging avian influenza A H7N9 virus from wet market poultry: clinical analysis and characterization of viral genome. Lancet. 2013;381:191625. DOIPubMedGoogle Scholar

Main Article

Page created: February 18, 2015
Page updated: February 18, 2015
Page reviewed: February 18, 2015
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external