Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 22, Number 2—February 2016

Invasive Group A Streptococcus Infection among Children, Rural Kenya

Anna C. SealeComments to Author , Mark R. Davies, Kirimi Anampiu, Susan C. Morpeth, Sammy Nyongesa, Salim Mwarumba, Pierre R. Smeesters, Androulla Efstratiou, Rosylene Karugutu, Neema Mturi, Thomas N. Williams, J. Anthony G. Scott, Samuel Kariuki, Gordon Dougan, and James A. Berkley
Author affiliations: KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya (A.C. Seale, K. Anampiu, S.C. Morpeth, S. Nyongesa, S. Mwarumba, N. Mturi, T.N. Williams, J.A.G. Scott, J.A. Berkley); University of Oxford, Oxford, UK (A.C. Seale, J.A. Berkley); University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia (M.R. Davies); University of Queensland, Brisbane, Queensland, Australia (M.R. Davies); The Wellcome Trust Sanger Institute, Cambridge, UK (M.R. Davies, S. Kariuki, G. Dougan); London School of Hygiene and Tropical Medicine, London, UK (S.C. Morpeth, J.A.G. Scott); Murdoch Children’s Research Institute, Melbourne, Victoria, Australia (P.R. Smeesters); University of Melbourne, Melbourne (P.R. Smeesters); Public Health England, London (A. Efstratiou); Imperial College, London (A. Efstratiou, T.N. Williams); The Kenya Medical Research Institute, Nairobi, Kenya (R. Karugutu, S. Kariuki)

Main Article

Table 1

Characteristics of children with GAS disease admitted to Kilifi County Hospital, Kenya, 1998–2011*

Characteristic All GAS disease, n = 369, no. (%) Definite invasive GAS disease, n = 152, no. (%) Probable invasive GAS disease, n = 217, no. (%)
0–6 d 33 (8.9) 13 (8.6) 20 (9.2)
7–28 d 61 (16.5) 38 (25.0) 23 (10.6)
29–59 d 17 (4.6) 12 (7.9) 5 (2.3)
60 d–1 y 63 (17.1) 40 (26.3) 23 (10.6)
>1 and <5 y 125 (33.9) 41 (27.0) 84 (38.7)
5–12 y
70 (19.0)
8 (5.3)
62 (28.6)
M 219 (59.3) 84 (55.3) 135 (62.2)
150 (40.7)
68 (44.7)
82 (37.8)
Severe acute malnutrition
No 294 (79.7) 106 (69.7) 188 (86.6)
Yes (wasting) 47 (12.7) 30 (19.7) 17 (7.8)
Yes (kwashiorkor) 11 (3.0) 9 (5.9) 2 (0.9)
Not known
17 (4.6)
7 (4.6)
10 (4.6)
Malaria (positive slide result)
No 313 (84.8) 123 (80.9) 190 (87.6)
56 (15.2)
29 (19.1)
27 (12.4)
HIV infection
No 209 (56.6) 116 (76.3) 93 (42.9)
Yes 28 (7.6) 24 (15.8) 4 (1.8)
Not known
132 (35.8)
12 (7.9)
120 (55.3)
Sickle cell disease
No 136 (36.9) 95 (62.5) 41 (18.9)
Sickle cell trait 14 (3.8) 9 (5.9) 5 (2.3)
Sickle cell disease 3 (0.8) 1 (0.7) 2 (0.9)
Not known 216 (58.5) 47 (30.9) 169 (77.9)

*Malaria incidence (slide-positive admissions data from Kilifi Health and Demographic Surveillance System) decreased from 28.5 to 3.45 cases per 1,000 person-years during 1999–2007. HIV prevalence was 4.9% (routine antenatal screening, 2004–2007) with no evidence of a temporal trend. Sickle cell disease prevalence among infants in the Kilifi Health and Demographic Surveillance System (2006–2009) was 15% for genotypes HbAS and 1% with HbSS (11). Severe acute malnutrition is referenced against World Health Organization population standards (Technical Appendix Table 1). GAS, group A Streptococcus.

Main Article

  1. Liu  L, Oza  S, Hogan  D, Perin  J, Rudan  I, Lawn  JE, Global, regional, and national causes of child mortality in 2000–13, with projections to inform post-2015 priorities: an updated systematic analysis. Lancet. 2015;385:43040 . DOIPubMedGoogle Scholar
  2. Rudan  I, Nair  H, Marusic  A, Campbell  H. Reducing mortality from childhood pneumonia and diarrhoea: the leading priority is also the greatest opportunity. J Glob Health. 2013;3:010101 . DOIPubMedGoogle Scholar
  3. Carapetis  JR, Steer  AC, Mulholland  EK, Weber  M. The global burden of group A streptococcal diseases. Lancet Infect Dis. 2005;5:68594. DOIPubMedGoogle Scholar
  4. The WHO Young Infants Study Group. Bacterial etiology of serious infections in young infants in developing countries: results of a multicentre study. Pediatr Infect Dis. 1999;18(Suppl):S1722. DOIGoogle Scholar
  5. Berkley  JA, Lowe  BS, Mwangi  I, Williams  T, Bauni  E, Mwarumba  S, Bacteremia among children admitted to a rural hospital in Kenya. N Engl J Med. 2005;352:3947. DOIPubMedGoogle Scholar
  6. Steer  AC, Jenney  A, Kado  J, Good  MF, Batzloff  M, Waqatakirewa  L, Prospective surveillance of invasive group A streptococcal disease, Fiji, 2005–2007. Emerg Infect Dis. 2009;15:21622.PubMedGoogle Scholar
  7. Baroux  N, D'Ortenzio  E, Amedeo  N, Baker  C, Ali Alsuwayyid  B, Dupont-Rouzeyrol  M, The emm-cluster typing system for group A Streptococcus identifies epidemiologic similarities across the Pacific region. Clin Infect Dis. 2014;59:e8492. DOIPubMedGoogle Scholar
  8. Aiken  AM, Mturi  N, Njuguna  P, Mohammed  S, Berkley  JA, Mwangi  I, Risk and causes of paediatric hospital-acquired bacteraemia in Kilifi District Hospital, Kenya: a prospective cohort study. Lancet. 2011;378:20217. DOIPubMedGoogle Scholar
  9. Scott  JA, Bauni  E, Moisi  JC, Ojal  J, Gatakaa  H, Nyundo  C, Profile: the Kilifi Health and Demographic Surveillance System (KHDSS). Int J Epidemiol. 2012;41:6507. DOIPubMedGoogle Scholar
  10. World Health Organization. Pocket book of hospital care for children: guidelines for the management of common childhood illnesses. 2nd ed. Geneva: The Organization; 2013.
  11. Williams  TN, Uyoga  S, Macharia  A, Ndila  C, McAuley  CF, Opi  DH, Bacteraemia in Kenyan children with sickle-cell anaemia: a retrospective cohort and case–control study. Lancet. 2009;374:136470. DOIPubMedGoogle Scholar
  12. Sumby  P, Porcella  SF, Madrigal  AG, Barbian  KD, Virtaneva  K, Ricklefs  SM, Evolutionary origin and emergence of a highly successful clone of serotype M1 group A Streptococcus involved multiple horizontal gene transfer events. J Infect Dis. 2005;192:77182. DOIPubMedGoogle Scholar
  13. Price  MN, Dehal  PS, Arkin  AP. FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol Biol Evol. 2009;26:164150. DOIPubMedGoogle Scholar
  14. Chewapreecha  C, Harris  SR, Croucher  NJ, Turner  C, Marttinen  P, Cheng  L, Dense genomic sampling identifies highways of pneumococcal recombination. Nat Genet. 2014;46:3059. DOIPubMedGoogle Scholar
  15. The Working Group on Severe Streptococcal Infections. Defining the group A streptococcal toxic shock syndrome. Rationale and consensus definition. JAMA. 1993;269:3901. DOIPubMedGoogle Scholar
  16. Beall  B, Facklam  R, Thompson  T. Sequencing emm-specific PCR products for routine and accurate typing of group A streptococci. J Clin Microbiol. 1996;34:9538.PubMedGoogle Scholar
  17. Sanderson-Smith  M, De Oliveira  DM, Guglielmini  J, McMillan  DJ, Vu  T, Holien  JK, A systematic and functional classification of Streptococcus pyogenes that serves as a new tool for molecular typing and vaccine development. J Infect Dis. 2014;210:132538.PubMedGoogle Scholar
  18. Enright  MC, Spratt  BG, Kalia  A, Cross  JH, Bessen  DE. Multilocus sequence typing of Streptococcus pyogenes and the relationships between emm type and clone. Infect Immun. 2001;69:241627. DOIPubMedGoogle Scholar
  19. Dale  JB, Penfound  TA, Chiang  EY, Walton  WJ. New 30-valent M protein–based vaccine evokes cross-opsonic antibodies against non-vaccine serotypes of group A streptococci. Vaccine. 2011;29:81758. DOIPubMedGoogle Scholar
  20. Dale  JB, Penfound  TA, Tamboura  B, Sow  SO, Nataro  JP, Tapia  M, Potential coverage of a multivalent M protein–based group A streptococcal vaccine. Vaccine. 2013;31:157681. DOIPubMedGoogle Scholar
  21. Moïsi  JC, Nokes  DJ, Gatakaa  H, Williams  TN, Bauni  E, Levine  OS, Sensitivity of hospital-based surveillance for severe disease: a geographic information system analysis of access to care in Kilifi District, Kenya. Bull World Health Organ. 2011;89:10211. DOIPubMedGoogle Scholar
  22. Herbert  HK, Lee  AC, Chandran  A, Rudan  I, Baqui  AH. Care seeking for neonatal illness in low- and middle-income countries: a systematic review. PLoS Med. 2012;9:e1001183. DOIPubMedGoogle Scholar
  23. Walker  MJ, Barnett  TC, McArthur  JD, Cole  JN, Gillen  CM, Henningham  A, Disease manifestations and pathogenic mechanisms of group A Streptococcus. Clin Microbiol Rev. 2014;27:264301 .DOIPubMedGoogle Scholar
  24. Marijon  E, Ou  P, Celermajer  DS, Ferreira  B, Mocumbi  AO, Jani  D, Prevalence of rheumatic heart disease detected by echocardiographic screening. N Engl J Med. 2007;357:4706. DOIPubMedGoogle Scholar
  25. Carapetis  JR. Rheumatic heart disease in developing countries. N Engl J Med. 2007;357:43941. DOIPubMedGoogle Scholar
  26. Currie  BJ, Carapetis  JR. Skin infections and infestations in Aboriginal communities in northern Australia. Australas J Dermatol. 2000;41:13943, quiz 44–5. DOIPubMedGoogle Scholar
  27. Scott  JA, Berkley  JA, Mwangi  I, Ochola  L, Uyoga  S, Macharia  A, Relation between falciparum malaria and bacteraemia in Kenyan children: a population-based, case–control study and a longitudinal study. Lancet. 2011;378:131623. DOIPubMedGoogle Scholar
  28. Berkley  JA, Bejon  P, Mwangi  T, Gwer  S, Maitland  K, Williams  TN, HIV infection, malnutrition, and invasive bacterial infection among children with severe malaria. Clin Infect Dis. 2009;49:33643. DOIPubMedGoogle Scholar
  29. Suara  RO. Group A beta-haemolytic streptococcal acute chest event in a child with sickle cell anaemia. Ann Trop Paediatr. 2001;21:1758. DOIPubMedGoogle Scholar
  30. Aken’Ova YA. Bakare RA, Okunade MA, Olaniyi J. Bacterial causes of acute osteomyelitis in sickle cell anaemia: changing infection profile. West Afr J Med. 1995;14:2558 .PubMedGoogle Scholar
  31. LeBlanc  W, Salah  H, Khakoo  Y. Group A beta-hemolytic streptococcal bacteremia in a patient with sickle cell anemia on penicillin prophylaxis. J Natl Med Assoc. 1995;87:3478 .PubMedGoogle Scholar
  32. McNeilly  CL, McMillan  DJ. Horizontal gene transfer and recombination in Streptococcus dysgalactiae subsp. equisimilis. Front Microbiol. 2014.5:676. PMID:25566202DOIGoogle Scholar
  33. Steer  AC, Law  I, Matatolu  L, Beall  BW, Carapetis  JR. Global emm type distribution of group A streptococci: systematic review and implications for vaccine development. Lancet Infect Dis. 2009;9:6116. DOIPubMedGoogle Scholar
  34. Abdissa  A, Asrat  D, Kronvall  G, Shittu  B, Achiko  D, Zeidan  M, High diversity of group A streptococcal emm types among healthy schoolchildren in Ethiopia. Clin Infect Dis. 2006;42:13627. DOIPubMedGoogle Scholar
  35. Arifeen  SE, Mullany  LC, Shah  R, Mannan  I, Rahman  SM, Talukder  MR, The effect of cord cleansing with chlorhexidine on neonatal mortality in rural Bangladesh: a community-based, cluster-randomised trial. Lancet. 2012;379:10228. DOIPubMedGoogle Scholar
  36. Mullany  LC, Darmstadt  GL, Khatry  SK, Katz  J, LeClerq  SC, Shrestha  S, Topical applications of chlorhexidine to the umbilical cord for prevention of omphalitis and neonatal mortality in southern Nepal: a community-based, cluster-randomised trial. Lancet. 2006;367:9108. DOIPubMedGoogle Scholar
  37. Tielsch  JM, Darmstadt  GL, Mullany  LC, Khatry  SK, Katz  J, LeClerq  SC, Impact of newborn skin-cleansing with chlorhexidine on neonatal mortality in southern Nepal: a community-based, cluster-randomized trial. Pediatrics. 2007;119:e33040. DOIPubMedGoogle Scholar
  38. Murray  J, Agocs  M, Serhan  F, Singh  S, Deloria-Knoll  M, O’Brien  K, Global invasive bacterial vaccine-preventable diseases surveillance—2008–2014. MMWR Morb Mortal Wkly Rep. 2014;63:115962 .PubMedGoogle Scholar
  39. Adegbola  RA, Secka  O, Lahai  G, Lloyd-Evans  N, Njie  A, Usen  S, Elimination of Haemophilus influenzae type b (Hib) disease from The Gambia after the introduction of routine immunisation with a Hib conjugate vaccine: a prospective study. Lancet. 2005;366:14450. DOIPubMedGoogle Scholar
  40. Singleton  RJ, Hennessy  TW, Bulkow  LR, Hammitt  LL, Zulz  T, Hurlburt  DA, Invasive pneumococcal disease caused by nonvaccine serotypes among Alaska Native children with high levels of 7-valent pneumococcal conjugate vaccine coverage. JAMA. 2007;297:178492. DOIPubMedGoogle Scholar

Main Article

Page created: January 14, 2016
Page updated: January 14, 2016
Page reviewed: January 14, 2016
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.