Volume 22, Number 2—February 2016
Research
Invasive Group A Streptococcus Infection among Children, Rural Kenya
Table 1
Characteristic | All GAS disease, n = 369, no. (%) | Definite invasive GAS disease, n = 152, no. (%) | Probable invasive GAS disease, n = 217, no. (%) |
---|---|---|---|
Age | |||
0–6 d | 33 (8.9) | 13 (8.6) | 20 (9.2) |
7–28 d | 61 (16.5) | 38 (25.0) | 23 (10.6) |
29–59 d | 17 (4.6) | 12 (7.9) | 5 (2.3) |
60 d–1 y | 63 (17.1) | 40 (26.3) | 23 (10.6) |
>1 and <5 y | 125 (33.9) | 41 (27.0) | 84 (38.7) |
5–12 y |
70 (19.0) |
8 (5.3) |
62 (28.6) |
Sex | |||
M | 219 (59.3) | 84 (55.3) | 135 (62.2) |
F |
150 (40.7) |
68 (44.7) |
82 (37.8) |
Severe acute malnutrition | |||
No | 294 (79.7) | 106 (69.7) | 188 (86.6) |
Yes (wasting) | 47 (12.7) | 30 (19.7) | 17 (7.8) |
Yes (kwashiorkor) | 11 (3.0) | 9 (5.9) | 2 (0.9) |
Not known |
17 (4.6) |
7 (4.6) |
10 (4.6) |
Malaria (positive slide result) | |||
No | 313 (84.8) | 123 (80.9) | 190 (87.6) |
Yes |
56 (15.2) |
29 (19.1) |
27 (12.4) |
HIV infection | |||
No | 209 (56.6) | 116 (76.3) | 93 (42.9) |
Yes | 28 (7.6) | 24 (15.8) | 4 (1.8) |
Not known |
132 (35.8) |
12 (7.9) |
120 (55.3) |
Sickle cell disease | |||
No | 136 (36.9) | 95 (62.5) | 41 (18.9) |
Sickle cell trait | 14 (3.8) | 9 (5.9) | 5 (2.3) |
Sickle cell disease | 3 (0.8) | 1 (0.7) | 2 (0.9) |
Not known | 216 (58.5) | 47 (30.9) | 169 (77.9) |
*Malaria incidence (slide-positive admissions data from Kilifi Health and Demographic Surveillance System) decreased from 28.5 to 3.45 cases per 1,000 person-years during 1999–2007. HIV prevalence was 4.9% (routine antenatal screening, 2004–2007) with no evidence of a temporal trend. Sickle cell disease prevalence among infants in the Kilifi Health and Demographic Surveillance System (2006–2009) was 15% for genotypes HbAS and 1% with HbSS (11). Severe acute malnutrition is referenced against World Health Organization population standards (Technical Appendix Table 1). GAS, group A Streptococcus.
References
- Liu L, Oza S, Hogan D, Perin J, Rudan I, Lawn JE, Global, regional, and national causes of child mortality in 2000–13, with projections to inform post-2015 priorities: an updated systematic analysis. Lancet. 2015;385:430–40 . DOIPubMedGoogle Scholar
- Rudan I, Nair H, Marusic A, Campbell H. Reducing mortality from childhood pneumonia and diarrhoea: the leading priority is also the greatest opportunity. J Glob Health. 2013;3:010101 . DOIPubMedGoogle Scholar
- Carapetis JR, Steer AC, Mulholland EK, Weber M. The global burden of group A streptococcal diseases. Lancet Infect Dis. 2005;5:685–94. DOIPubMedGoogle Scholar
- The WHO Young Infants Study Group. Bacterial etiology of serious infections in young infants in developing countries: results of a multicentre study. Pediatr Infect Dis. 1999;18(Suppl):S17–22. DOIGoogle Scholar
- Berkley JA, Lowe BS, Mwangi I, Williams T, Bauni E, Mwarumba S, Bacteremia among children admitted to a rural hospital in Kenya. N Engl J Med. 2005;352:39–47. DOIPubMedGoogle Scholar
- Steer AC, Jenney A, Kado J, Good MF, Batzloff M, Waqatakirewa L, Prospective surveillance of invasive group A streptococcal disease, Fiji, 2005–2007. Emerg Infect Dis. 2009;15:216–22.PubMedGoogle Scholar
- Baroux N, D'Ortenzio E, Amedeo N, Baker C, Ali Alsuwayyid B, Dupont-Rouzeyrol M, The emm-cluster typing system for group A Streptococcus identifies epidemiologic similarities across the Pacific region. Clin Infect Dis. 2014;59:e84–92. DOIPubMedGoogle Scholar
- Aiken AM, Mturi N, Njuguna P, Mohammed S, Berkley JA, Mwangi I, Risk and causes of paediatric hospital-acquired bacteraemia in Kilifi District Hospital, Kenya: a prospective cohort study. Lancet. 2011;378:2021–7. DOIPubMedGoogle Scholar
- Scott JA, Bauni E, Moisi JC, Ojal J, Gatakaa H, Nyundo C, Profile: the Kilifi Health and Demographic Surveillance System (KHDSS). Int J Epidemiol. 2012;41:650–7. DOIPubMedGoogle Scholar
- World Health Organization. Pocket book of hospital care for children: guidelines for the management of common childhood illnesses. 2nd ed. Geneva: The Organization; 2013.
- Williams TN, Uyoga S, Macharia A, Ndila C, McAuley CF, Opi DH, Bacteraemia in Kenyan children with sickle-cell anaemia: a retrospective cohort and case–control study. Lancet. 2009;374:1364–70. DOIPubMedGoogle Scholar
- Sumby P, Porcella SF, Madrigal AG, Barbian KD, Virtaneva K, Ricklefs SM, Evolutionary origin and emergence of a highly successful clone of serotype M1 group A Streptococcus involved multiple horizontal gene transfer events. J Infect Dis. 2005;192:771–82. DOIPubMedGoogle Scholar
- Price MN, Dehal PS, Arkin AP. FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol Biol Evol. 2009;26:1641–50. DOIPubMedGoogle Scholar
- Chewapreecha C, Harris SR, Croucher NJ, Turner C, Marttinen P, Cheng L, Dense genomic sampling identifies highways of pneumococcal recombination. Nat Genet. 2014;46:305–9. DOIPubMedGoogle Scholar
- The Working Group on Severe Streptococcal Infections. Defining the group A streptococcal toxic shock syndrome. Rationale and consensus definition. JAMA. 1993;269:390–1. DOIPubMedGoogle Scholar
- Beall B, Facklam R, Thompson T. Sequencing emm-specific PCR products for routine and accurate typing of group A streptococci. J Clin Microbiol. 1996;34:953–8.PubMedGoogle Scholar
- Sanderson-Smith M, De Oliveira DM, Guglielmini J, McMillan DJ, Vu T, Holien JK, A systematic and functional classification of Streptococcus pyogenes that serves as a new tool for molecular typing and vaccine development. J Infect Dis. 2014;210:1325–38.PubMedGoogle Scholar
- Enright MC, Spratt BG, Kalia A, Cross JH, Bessen DE. Multilocus sequence typing of Streptococcus pyogenes and the relationships between emm type and clone. Infect Immun. 2001;69:2416–27. DOIPubMedGoogle Scholar
- Dale JB, Penfound TA, Chiang EY, Walton WJ. New 30-valent M protein–based vaccine evokes cross-opsonic antibodies against non-vaccine serotypes of group A streptococci. Vaccine. 2011;29:8175–8. DOIPubMedGoogle Scholar
- Dale JB, Penfound TA, Tamboura B, Sow SO, Nataro JP, Tapia M, Potential coverage of a multivalent M protein–based group A streptococcal vaccine. Vaccine. 2013;31:1576–81. DOIPubMedGoogle Scholar
- Moïsi JC, Nokes DJ, Gatakaa H, Williams TN, Bauni E, Levine OS, Sensitivity of hospital-based surveillance for severe disease: a geographic information system analysis of access to care in Kilifi District, Kenya. Bull World Health Organ. 2011;89:102–11. DOIPubMedGoogle Scholar
- Herbert HK, Lee AC, Chandran A, Rudan I, Baqui AH. Care seeking for neonatal illness in low- and middle-income countries: a systematic review. PLoS Med. 2012;9:e1001183. DOIPubMedGoogle Scholar
- Walker MJ, Barnett TC, McArthur JD, Cole JN, Gillen CM, Henningham A, Disease manifestations and pathogenic mechanisms of group A Streptococcus. Clin Microbiol Rev. 2014;27:264–301 .DOIPubMedGoogle Scholar
- Marijon E, Ou P, Celermajer DS, Ferreira B, Mocumbi AO, Jani D, Prevalence of rheumatic heart disease detected by echocardiographic screening. N Engl J Med. 2007;357:470–6. DOIPubMedGoogle Scholar
- Carapetis JR. Rheumatic heart disease in developing countries. N Engl J Med. 2007;357:439–41. DOIPubMedGoogle Scholar
- Currie BJ, Carapetis JR. Skin infections and infestations in Aboriginal communities in northern Australia. Australas J Dermatol. 2000;41:139–43, quiz 44–5. DOIPubMedGoogle Scholar
- Scott JA, Berkley JA, Mwangi I, Ochola L, Uyoga S, Macharia A, Relation between falciparum malaria and bacteraemia in Kenyan children: a population-based, case–control study and a longitudinal study. Lancet. 2011;378:1316–23. DOIPubMedGoogle Scholar
- Berkley JA, Bejon P, Mwangi T, Gwer S, Maitland K, Williams TN, HIV infection, malnutrition, and invasive bacterial infection among children with severe malaria. Clin Infect Dis. 2009;49:336–43. DOIPubMedGoogle Scholar
- Suara RO. Group A beta-haemolytic streptococcal acute chest event in a child with sickle cell anaemia. Ann Trop Paediatr. 2001;21:175–8. DOIPubMedGoogle Scholar
- Aken’Ova YA. Bakare RA, Okunade MA, Olaniyi J. Bacterial causes of acute osteomyelitis in sickle cell anaemia: changing infection profile. West Afr J Med. 1995;14:255–8 .PubMedGoogle Scholar
- LeBlanc W, Salah H, Khakoo Y. Group A beta-hemolytic streptococcal bacteremia in a patient with sickle cell anemia on penicillin prophylaxis. J Natl Med Assoc. 1995;87:347–8 .PubMedGoogle Scholar
- McNeilly CL, McMillan DJ. Horizontal gene transfer and recombination in Streptococcus dysgalactiae subsp. equisimilis. Front Microbiol. 2014.5:676. PMID:25566202DOIGoogle Scholar
- Steer AC, Law I, Matatolu L, Beall BW, Carapetis JR. Global emm type distribution of group A streptococci: systematic review and implications for vaccine development. Lancet Infect Dis. 2009;9:611–6. DOIPubMedGoogle Scholar
- Abdissa A, Asrat D, Kronvall G, Shittu B, Achiko D, Zeidan M, High diversity of group A streptococcal emm types among healthy schoolchildren in Ethiopia. Clin Infect Dis. 2006;42:1362–7. DOIPubMedGoogle Scholar
- Arifeen SE, Mullany LC, Shah R, Mannan I, Rahman SM, Talukder MR, The effect of cord cleansing with chlorhexidine on neonatal mortality in rural Bangladesh: a community-based, cluster-randomised trial. Lancet. 2012;379:1022–8. DOIPubMedGoogle Scholar
- Mullany LC, Darmstadt GL, Khatry SK, Katz J, LeClerq SC, Shrestha S, Topical applications of chlorhexidine to the umbilical cord for prevention of omphalitis and neonatal mortality in southern Nepal: a community-based, cluster-randomised trial. Lancet. 2006;367:910–8. DOIPubMedGoogle Scholar
- Tielsch JM, Darmstadt GL, Mullany LC, Khatry SK, Katz J, LeClerq SC, Impact of newborn skin-cleansing with chlorhexidine on neonatal mortality in southern Nepal: a community-based, cluster-randomized trial. Pediatrics. 2007;119:e330–40. DOIPubMedGoogle Scholar
- Murray J, Agocs M, Serhan F, Singh S, Deloria-Knoll M, O’Brien K, Global invasive bacterial vaccine-preventable diseases surveillance—2008–2014. MMWR Morb Mortal Wkly Rep. 2014;63:1159–62 .PubMedGoogle Scholar
- Adegbola RA, Secka O, Lahai G, Lloyd-Evans N, Njie A, Usen S, Elimination of Haemophilus influenzae type b (Hib) disease from The Gambia after the introduction of routine immunisation with a Hib conjugate vaccine: a prospective study. Lancet. 2005;366:144–50. DOIPubMedGoogle Scholar
- Singleton RJ, Hennessy TW, Bulkow LR, Hammitt LL, Zulz T, Hurlburt DA, Invasive pneumococcal disease caused by nonvaccine serotypes among Alaska Native children with high levels of 7-valent pneumococcal conjugate vaccine coverage. JAMA. 2007;297:1784–92. DOIPubMedGoogle Scholar
Page created: January 14, 2016
Page updated: January 14, 2016
Page reviewed: January 14, 2016
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.