Volume 22, Number 2—February 2016
Research
Invasive Group A Streptococcus Infection among Children, Rural Kenya
Table 1
Characteristics of children with GAS disease admitted to Kilifi County Hospital, Kenya, 1998–2011*
Characteristic | All GAS disease, n = 369, no. (%) | Definite invasive GAS disease, n = 152, no. (%) | Probable invasive GAS disease, n = 217, no. (%) |
---|---|---|---|
Age | |||
0–6 d | 33 (8.9) | 13 (8.6) | 20 (9.2) |
7–28 d | 61 (16.5) | 38 (25.0) | 23 (10.6) |
29–59 d | 17 (4.6) | 12 (7.9) | 5 (2.3) |
60 d–1 y | 63 (17.1) | 40 (26.3) | 23 (10.6) |
>1 and <5 y | 125 (33.9) | 41 (27.0) | 84 (38.7) |
5–12 y |
70 (19.0) |
8 (5.3) |
62 (28.6) |
Sex | |||
M | 219 (59.3) | 84 (55.3) | 135 (62.2) |
F |
150 (40.7) |
68 (44.7) |
82 (37.8) |
Severe acute malnutrition | |||
No | 294 (79.7) | 106 (69.7) | 188 (86.6) |
Yes (wasting) | 47 (12.7) | 30 (19.7) | 17 (7.8) |
Yes (kwashiorkor) | 11 (3.0) | 9 (5.9) | 2 (0.9) |
Not known |
17 (4.6) |
7 (4.6) |
10 (4.6) |
Malaria (positive slide result) | |||
No | 313 (84.8) | 123 (80.9) | 190 (87.6) |
Yes |
56 (15.2) |
29 (19.1) |
27 (12.4) |
HIV infection | |||
No | 209 (56.6) | 116 (76.3) | 93 (42.9) |
Yes | 28 (7.6) | 24 (15.8) | 4 (1.8) |
Not known |
132 (35.8) |
12 (7.9) |
120 (55.3) |
Sickle cell disease | |||
No | 136 (36.9) | 95 (62.5) | 41 (18.9) |
Sickle cell trait | 14 (3.8) | 9 (5.9) | 5 (2.3) |
Sickle cell disease | 3 (0.8) | 1 (0.7) | 2 (0.9) |
Not known | 216 (58.5) | 47 (30.9) | 169 (77.9) |
*Malaria incidence (slide-positive admissions data from Kilifi Health and Demographic Surveillance System) decreased from 28.5 to 3.45 cases per 1,000 person-years during 1999–2007. HIV prevalence was 4.9% (routine antenatal screening, 2004–2007) with no evidence of a temporal trend. Sickle cell disease prevalence among infants in the Kilifi Health and Demographic Surveillance System (2006–2009) was 15% for genotypes HbAS and 1% with HbSS (11). Severe acute malnutrition is referenced against World Health Organization population standards (Technical Appendix Table 1). GAS, group A Streptococcus.
References
- Liu L, Oza S, Hogan D, Perin J, Rudan I, Lawn JE, Global, regional, and national causes of child mortality in 2000–13, with projections to inform post-2015 priorities: an updated systematic analysis. Lancet. 2015;385:430–40 . DOIPubMedGoogle Scholar
- Rudan I, Nair H, Marusic A, Campbell H. Reducing mortality from childhood pneumonia and diarrhoea: the leading priority is also the greatest opportunity. J Glob Health. 2013;3:010101 . DOIPubMedGoogle Scholar
- Carapetis JR, Steer AC, Mulholland EK, Weber M. The global burden of group A streptococcal diseases. Lancet Infect Dis. 2005;5:685–94. DOIPubMedGoogle Scholar
- The WHO Young Infants Study Group. Bacterial etiology of serious infections in young infants in developing countries: results of a multicentre study. Pediatr Infect Dis. 1999;18(Suppl):S17–22. DOIGoogle Scholar
- Berkley JA, Lowe BS, Mwangi I, Williams T, Bauni E, Mwarumba S, Bacteremia among children admitted to a rural hospital in Kenya. N Engl J Med. 2005;352:39–47. DOIPubMedGoogle Scholar
- Steer AC, Jenney A, Kado J, Good MF, Batzloff M, Waqatakirewa L, Prospective surveillance of invasive group A streptococcal disease, Fiji, 2005–2007. Emerg Infect Dis. 2009;15:216–22.PubMedGoogle Scholar
- Baroux N, D'Ortenzio E, Amedeo N, Baker C, Ali Alsuwayyid B, Dupont-Rouzeyrol M, The emm-cluster typing system for group A Streptococcus identifies epidemiologic similarities across the Pacific region. Clin Infect Dis. 2014;59:e84–92. DOIPubMedGoogle Scholar
- Aiken AM, Mturi N, Njuguna P, Mohammed S, Berkley JA, Mwangi I, Risk and causes of paediatric hospital-acquired bacteraemia in Kilifi District Hospital, Kenya: a prospective cohort study. Lancet. 2011;378:2021–7. DOIPubMedGoogle Scholar
- Scott JA, Bauni E, Moisi JC, Ojal J, Gatakaa H, Nyundo C, Profile: the Kilifi Health and Demographic Surveillance System (KHDSS). Int J Epidemiol. 2012;41:650–7. DOIPubMedGoogle Scholar
- World Health Organization. Pocket book of hospital care for children: guidelines for the management of common childhood illnesses. 2nd ed. Geneva: The Organization; 2013.
- Sumby P, Porcella SF, Madrigal AG, Barbian KD, Virtaneva K, Ricklefs SM, Evolutionary origin and emergence of a highly successful clone of serotype M1 group A Streptococcus involved multiple horizontal gene transfer events. J Infect Dis. 2005;192:771–82. DOIPubMedGoogle Scholar
- Price MN, Dehal PS, Arkin AP. FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol Biol Evol. 2009;26:1641–50. DOIPubMedGoogle Scholar
- Chewapreecha C, Harris SR, Croucher NJ, Turner C, Marttinen P, Cheng L, Dense genomic sampling identifies highways of pneumococcal recombination. Nat Genet. 2014;46:305–9. DOIPubMedGoogle Scholar
- The Working Group on Severe Streptococcal Infections. Defining the group A streptococcal toxic shock syndrome. Rationale and consensus definition. JAMA. 1993;269:390–1. DOIPubMedGoogle Scholar
- Beall B, Facklam R, Thompson T. Sequencing emm-specific PCR products for routine and accurate typing of group A streptococci. J Clin Microbiol. 1996;34:953–8.PubMedGoogle Scholar
- Sanderson-Smith M, De Oliveira DM, Guglielmini J, McMillan DJ, Vu T, Holien JK, A systematic and functional classification of Streptococcus pyogenes that serves as a new tool for molecular typing and vaccine development. J Infect Dis. 2014;210:1325–38.PubMedGoogle Scholar
- Enright MC, Spratt BG, Kalia A, Cross JH, Bessen DE. Multilocus sequence typing of Streptococcus pyogenes and the relationships between emm type and clone. Infect Immun. 2001;69:2416–27. DOIPubMedGoogle Scholar
- Dale JB, Penfound TA, Chiang EY, Walton WJ. New 30-valent M protein–based vaccine evokes cross-opsonic antibodies against non-vaccine serotypes of group A streptococci. Vaccine. 2011;29:8175–8. DOIPubMedGoogle Scholar
- Dale JB, Penfound TA, Tamboura B, Sow SO, Nataro JP, Tapia M, Potential coverage of a multivalent M protein–based group A streptococcal vaccine. Vaccine. 2013;31:1576–81. DOIPubMedGoogle Scholar
- Moïsi JC, Nokes DJ, Gatakaa H, Williams TN, Bauni E, Levine OS, Sensitivity of hospital-based surveillance for severe disease: a geographic information system analysis of access to care in Kilifi District, Kenya. Bull World Health Organ. 2011;89:102–11. DOIPubMedGoogle Scholar
- Herbert HK, Lee AC, Chandran A, Rudan I, Baqui AH. Care seeking for neonatal illness in low- and middle-income countries: a systematic review. PLoS Med. 2012;9:e1001183. DOIPubMedGoogle Scholar
- Walker MJ, Barnett TC, McArthur JD, Cole JN, Gillen CM, Henningham A, Disease manifestations and pathogenic mechanisms of group A Streptococcus. Clin Microbiol Rev. 2014;27:264–301 .DOIPubMedGoogle Scholar
- Marijon E, Ou P, Celermajer DS, Ferreira B, Mocumbi AO, Jani D, Prevalence of rheumatic heart disease detected by echocardiographic screening. N Engl J Med. 2007;357:470–6. DOIPubMedGoogle Scholar
- Carapetis JR. Rheumatic heart disease in developing countries. N Engl J Med. 2007;357:439–41. DOIPubMedGoogle Scholar
- Currie BJ, Carapetis JR. Skin infections and infestations in Aboriginal communities in northern Australia. Australas J Dermatol. 2000;41:139–43, quiz 44–5. DOIPubMedGoogle Scholar
- Scott JA, Berkley JA, Mwangi I, Ochola L, Uyoga S, Macharia A, Relation between falciparum malaria and bacteraemia in Kenyan children: a population-based, case–control study and a longitudinal study. Lancet. 2011;378:1316–23. DOIPubMedGoogle Scholar
- Berkley JA, Bejon P, Mwangi T, Gwer S, Maitland K, Williams TN, HIV infection, malnutrition, and invasive bacterial infection among children with severe malaria. Clin Infect Dis. 2009;49:336–43. DOIPubMedGoogle Scholar
- Suara RO. Group A beta-haemolytic streptococcal acute chest event in a child with sickle cell anaemia. Ann Trop Paediatr. 2001;21:175–8. DOIPubMedGoogle Scholar
- Aken’Ova YA. Bakare RA, Okunade MA, Olaniyi J. Bacterial causes of acute osteomyelitis in sickle cell anaemia: changing infection profile. West Afr J Med. 1995;14:255–8 .PubMedGoogle Scholar
- LeBlanc W, Salah H, Khakoo Y. Group A beta-hemolytic streptococcal bacteremia in a patient with sickle cell anemia on penicillin prophylaxis. J Natl Med Assoc. 1995;87:347–8 .PubMedGoogle Scholar
- McNeilly CL, McMillan DJ. Horizontal gene transfer and recombination in Streptococcus dysgalactiae subsp. equisimilis. Front Microbiol. 2014.5:676. PMID:25566202DOIGoogle Scholar
- Steer AC, Law I, Matatolu L, Beall BW, Carapetis JR. Global emm type distribution of group A streptococci: systematic review and implications for vaccine development. Lancet Infect Dis. 2009;9:611–6. DOIPubMedGoogle Scholar
- Abdissa A, Asrat D, Kronvall G, Shittu B, Achiko D, Zeidan M, High diversity of group A streptococcal emm types among healthy schoolchildren in Ethiopia. Clin Infect Dis. 2006;42:1362–7. DOIPubMedGoogle Scholar
- Arifeen SE, Mullany LC, Shah R, Mannan I, Rahman SM, Talukder MR, The effect of cord cleansing with chlorhexidine on neonatal mortality in rural Bangladesh: a community-based, cluster-randomised trial. Lancet. 2012;379:1022–8. DOIPubMedGoogle Scholar
- Mullany LC, Darmstadt GL, Khatry SK, Katz J, LeClerq SC, Shrestha S, Topical applications of chlorhexidine to the umbilical cord for prevention of omphalitis and neonatal mortality in southern Nepal: a community-based, cluster-randomised trial. Lancet. 2006;367:910–8. DOIPubMedGoogle Scholar
- Tielsch JM, Darmstadt GL, Mullany LC, Khatry SK, Katz J, LeClerq SC, Impact of newborn skin-cleansing with chlorhexidine on neonatal mortality in southern Nepal: a community-based, cluster-randomized trial. Pediatrics. 2007;119:e330–40. DOIPubMedGoogle Scholar
- Murray J, Agocs M, Serhan F, Singh S, Deloria-Knoll M, O’Brien K, Global invasive bacterial vaccine-preventable diseases surveillance—2008–2014. MMWR Morb Mortal Wkly Rep. 2014;63:1159–62 .PubMedGoogle Scholar
- Adegbola RA, Secka O, Lahai G, Lloyd-Evans N, Njie A, Usen S, Elimination of Haemophilus influenzae type b (Hib) disease from The Gambia after the introduction of routine immunisation with a Hib conjugate vaccine: a prospective study. Lancet. 2005;366:144–50. DOIPubMedGoogle Scholar
- Singleton RJ, Hennessy TW, Bulkow LR, Hammitt LL, Zulz T, Hurlburt DA, Invasive pneumococcal disease caused by nonvaccine serotypes among Alaska Native children with high levels of 7-valent pneumococcal conjugate vaccine coverage. JAMA. 2007;297:1784–92. DOIPubMedGoogle Scholar