Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 23, Number 6—June 2017
Research

Invasive Serotype 35B Pneumococci Including an Expanding Serotype Switch Lineage, United States, 2015–2016

Sopio Chochua, Benjamin J. Metcalf, Zhongya Li, Hollis Walker, Theresa Tran, Lesley McGee, and Bernard BeallComments to Author 
Author affiliations: Centers for Disease Control and Prevention, Atlanta, Georgia, USA

Main Article

Figure 3

Diagrammatic representation of cps loci and adjacent regions from donor, recipient and progeny strains depicting serotype switch event for pneumococcal isolates, United States, 2015–2016. Red and green lines in progeny indicate regions of sequence identity or near identity (<2 single-nucleotide polymorphisms/10,000 bp) to the above corresponding donor and recipient sequences, respectively. Rectangles indicate relative locations of PBP gene types for pbp2x and pbp1a. Below each cps locus, a re

Figure 3. Diagrammatic representation of cps loci and adjacent regions from donor, recipient and progeny strains depicting serotype switch event for pneumococcal isolates, United States, 2015–2016. Red and green lines in progeny indicate regions of sequence identity or near identity (<2 single-nucleotide polymorphisms/10,000 bp) to the above corresponding donor and recipient sequences, respectively. Rectangles indicate relative locations of PBP gene types for pbp2x and pbp1a. Below each cps locus, a representative reference strain is indicated along with relevant features determined through a bioinformatics pipeline (MLST, PBP type, resistance markers). Junctions between donor and recipient sequences involved in the 2 single recombinational crossovers in the gene replacement event are indicated with blue arrowheads above the progeny diagram, although a single short internal region with sequence identity to the recipient nested within the donor fragment (left coordinates 11349–11839) is also present. Below each green or red segment of the progeny, the level of sequence identity to donor and recipient is provided. The list of each progeny strain, date of isolation, and state is provided. Where MLST is not ST156, its single locus variants (ST9910, ST11584, and ST12921) are included. Two exceptions indicating flanking post-switch recombination within left coordinates 1–6453 are indicated in isolates 20152884 and 20161413 (asterisks): isolate 20152884 had only 99.3%−99.5% identity to recipient and donor over bases 1–3715, and isolate 20161413 had only 99.5%–99.7% identity to recipient and donor over bases 1–2143. Two strains on the right indicate a post-switch deletion event within the wciG putative acetyltransferase gene, which putatively contributes to the acetylation pattern of the serotype 35B polysaccharide (26). MLST, multilocus sequence type; PBP, penicillin-binding protein; ST, sequence type.

Main Article

References
  1. Pilishvili  T, Lexau  C, Farley  MM, Hadler  J, Harrison  LH, Bennett  NM, et al.; Active Bacterial Core Surveillance/Emerging Infections Program Network. Sustained reductions in invasive pneumococcal disease in the era of conjugate vaccine. J Infect Dis. 2010;201:3241. DOIPubMedGoogle Scholar
  2. Moore  MR, Link-Gelles  R, Schaffner  W, Lynfield  R, Lexau  C, Bennett  NM, et al. Effect of use of 13-valent pneumococcal conjugate vaccine in children on invasive pneumococcal disease in children and adults in the USA: analysis of multisite, population-based surveillance. Lancet Infect Dis. 2015;15:3019. DOIPubMedGoogle Scholar
  3. Beall  B, McEllistrem  MC, Gertz  RE Jr, Boxrud  DJ, Besser  JM, Harrison  LH, et al.; Active Bacterial Core Surveillance/Emerging Infections Program Network. Emergence of a novel penicillin-nonsusceptible, invasive serotype 35B clone of Streptococcus pneumoniae within the United States. J Infect Dis. 2002;186:11822. DOIPubMedGoogle Scholar
  4. Gertz  RE Jr, Li  Z, Pimenta  FC, Jackson  D, Juni  BA, Lynfield  R, et al. Increased penicillin-nonsusceptibility of nonvaccine serotype (other than 19A and 6A) invasive pneumococci in post 7 valent conjugate vaccine era. J Infect Dis. 2010;201:7705. DOIPubMedGoogle Scholar
  5. Sharma  D, Baughman  W, Holst  A, Thomas  S, Jackson  D, da Gloria Carvalho  M, et al. Pneumococcal carriage and invasive disease in children before introduction of the 13-valent conjugate vaccine: comparison with the era before 7-valent conjugate vaccine. Pediatr Infect Dis J. 2013;32:e4553. DOIPubMedGoogle Scholar
  6. Metcalf  BJ, Gertz  RE Jr, Gladstone  RA, Walker  H, Sherwood  LK, Jackson  D, et al. Active Bacterial Core surveillance team. Strain features and distributions in pneumococci from children with invasive disease before and after 13-valent conjugate vaccine implementation in the USA. Clin Microbiol Infect. 2016;22:60.e929. DOIGoogle Scholar
  7. Desai  AP, Sharma  D, Crispell  EK, Baughman  W, Thomas  S, Tunali  A, et al. Decline in pneumococcal nasopharyngeal carriage of vaccine serotypes after the introduction of the 13-valent pneumococcal conjugate vaccine in children in Atlanta, Georgia. Pediatr Infect Dis J. 2015;34:116874. DOIPubMedGoogle Scholar
  8. Kaur  R, Casey  JR, Pichichero  ME. Emerging Streptococcus pneumoniae strains colonizing the nasopharynx in children after 13-valent pneumococcal conjugate vaccination in comparison to the 7-valent era, 2006–2015. Pediatr Infect Dis J. 2016;35:9016. DOIPubMedGoogle Scholar
  9. Kawaguchiya  M, Urushibara  N, Kobayashi  N. Multidrug resistance in non-PCV13 serotypes of Streptococcus pneumoniae in northern Japan, 2014. Microb Drug Resist. 2017;23:20614. DOIPubMedGoogle Scholar
  10. McElligott  M, Vickers  I, Meehan  M, Cafferkey  M, Cunney  R, Humphreys  H. Noninvasive pneumococcal clones associated with antimicrobial nonsusceptibility isolated from children in the era of conjugate vaccines. Antimicrob Agents Chemother. 2015;59:57617. DOIPubMedGoogle Scholar
  11. Golden  AR, Adam  HJ, Gilmour  MW, Baxter  MR, Martin  I, Nichol  KA, et al. Assessment of multidrug resistance, clonality and virulence in non-PCV-13 Streptococcus pneumoniae serotypes in Canada, 2011-13. J Antimicrob Chemother. 2015;70:19604.PubMedGoogle Scholar
  12. Metcalf  BJ, Chochua  S, Gertz  RE Jr, Li  Z, Walker  H, Tran  T, et al. Active Bacterial Core surveillance team. Using whole genome sequencing to identify resistance determinants and predict antimicrobial resistance phenotypes for year 2015 invasive pneumococcal disease isolates recovered in the United States. Clin Microbiol Infect. 2016;22:1002.e18. DOIGoogle Scholar
  13. Beall  B, McEllistrem  MC, Gertz  RE Jr, Wedel  S, Boxrud  DJ, Gonzalez  AL, et al.; Active Bacterial Core Surveillance Team. Pre- and postvaccination clonal compositions of invasive pneumococcal serotypes for isolates collected in the United States in 1999, 2001, and 2002. J Clin Microbiol. 2006;44:9991017. DOIPubMedGoogle Scholar
  14. Beall  BW, Gertz  RE, Hulkower  RL, Whitney  CG, Moore  MR, Brueggemann  AB. Shifting genetic structure of invasive serotype 19A pneumococci in the United States. J Infect Dis. 2011;203:13608. DOIPubMedGoogle Scholar
  15. Li  Y, Metcalf  BJ, Chochua  S, Li  Z, Gertz  RE Jr, Walker  H, et al. Penicillin-binding protein transpeptidase signatures for tracking and predicting β-lactam resistance levels in Streptococcus pneumoniae. MBio. 2016;7:e0075616. DOIPubMedGoogle Scholar
  16. Clinical and Laboratory Standards Institute (CLSI). Performance standards for antimicrobial susceptibility testing. Twenty-third informational supplement (M100–S22.CLSI). Wayne (PA): The Institute; 2013.
  17. Martin  M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. 2011;17:102. DOIGoogle Scholar
  18. Zerbino  DR, Birney  E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 2008;18:8219. DOIPubMedGoogle Scholar
  19. Gardner  SN, Slezak  T, Hall  BG. kSNP3.0: SNP detection and phylogenetic analysis of genomes without genome alignment or reference genome. Bioinformatics. 2015;31:28778. DOIPubMedGoogle Scholar
  20. Stamatakis  A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:13123. DOIPubMedGoogle Scholar
  21. Feil  EJ, Li  BC, Aanensen  DM, Hanage  WP, Spratt  BG. eBURST: inferring patterns of evolutionary descent among clusters of related bacterial genotypes from multilocus sequence typing data. J Bacteriol. 2004;186:151830. DOIPubMedGoogle Scholar
  22. Barocchi  MA, Ries  J, Zogaj  X, Hemsley  C, Albiger  B, Kanth  A, et al. A pneumococcal pilus influences virulence and host inflammatory responses. Proc Natl Acad Sci U S A. 2006;103:285762. DOIPubMedGoogle Scholar
  23. Coffey  TJ, Daniels  M, Enright  MC, Spratt  BG. Serotype 14 variants of the Spanish penicillin-resistant serotype 9V clone of Streptococcus pneumoniae arose by large recombinational replacements of the cpsA-pbp1a region. Microbiology. 1999;145:202331. DOIPubMedGoogle Scholar
  24. Brueggemann  AB, Pai  R, Crook  DW, Beall  B. Vaccine escape recombinants emerge after pneumococcal vaccination in the United States. PLoS Pathog. 2007;3:e168. DOIPubMedGoogle Scholar
  25. Wyres  KL, Lambertsen  LM, Croucher  NJ, McGee  L, von Gottberg  A, Liñares  J, et al. Pneumococcal capsular switching: a historical perspective. J Infect Dis. 2013;207:43949. DOIPubMedGoogle Scholar
  26. Mavroidi  A, Aanensen  DM, Godoy  D, Skovsted  IC, Kaltoft  MS, Reeves  PR, et al. Genetic relatedness of the Streptococcus pneumoniae capsular biosynthetic loci. J Bacteriol. 2007;189:784155. DOIPubMedGoogle Scholar
  27. Golubchik  T, Brueggemann  AB, Street  T, Gertz  RE Jr, Spencer  CC, Ho  T, et al. Pneumococcal genome sequencing tracks a vaccine escape variant formed through a multi-fragment recombination event. Nat Genet. 2012;44:3525. DOIPubMedGoogle Scholar
  28. Enright  MC, Spratt  BG. Extensive variation in the ddl gene of penicillin-resistant Streptococcus pneumoniae results from a hitchhiking effect driven by the penicillin-binding protein 2b gene. Mol Biol Evol. 1999;16:168795. DOIPubMedGoogle Scholar
  29. Kauffmann  F, Mørch  E, Schmith  K. On the serology of the pneumococcus-group. J Immunol. 1940;39:397426.
  30. Lund  E. On the nomenclature of the pneumococcal types. Int J Syst Bacteriol. 1970;20:3213. DOIGoogle Scholar
  31. Henrichsen  J. Six newly recognized types of Streptococcus pneumoniae. J Clin Microbiol. 1995;33:275962.PubMedGoogle Scholar
  32. Kim  L, McGee  L, Tomczyk  S, Beall  B. Biological and epidemiological features of antibiotic-resistant Streptococcus pneumoniae in pre- and post-conjugate vaccine eras: a United States perspective. Clin Microbiol Rev. 2016;29:52552. DOIPubMedGoogle Scholar
  33. Olarte  L, Kaplan  SL, Barson  WJ, Romero  JR, Lin  PL, Tan  TQ, et al. Emergence of multidrug-resistant pneumococcal serotype 35B among children in the United States. J Clin Microbiol. 2017;55:72434. DOIPubMedGoogle Scholar
  34. Moore  MR, Gertz  RE Jr, Woodbury  RL, Barkocy-Gallagher  GA, Schaffner  W, Lexau  C, et al. Population snapshot of emergent Streptococcus pneumoniae serotype 19A in the United States, 2005. J Infect Dis. 2008;197:101627. DOIPubMedGoogle Scholar
  35. Sobanjo-ter Meulen  A, Vesikari  T, Malacaman  EA, Shapiro  SA, Dallas  MJ, Hoover  PA, et al. Safety, tolerability and immunogenicity of 15-valent pneumococcal conjugate vaccine in toddlers previously vaccinated with 7-valent pneumococcal conjugate vaccine. Pediatr Infect Dis J. 2015;34:18694. DOIPubMedGoogle Scholar

Main Article

Page created: May 16, 2017
Page updated: May 16, 2017
Page reviewed: May 16, 2017
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external