Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 23, Number 6—June 2017
Research

Invasive Serotype 35B Pneumococci Including an Expanding Serotype Switch Lineage, United States, 2015–2016

Sopio Chochua, Benjamin J. Metcalf, Zhongya Li, Hollis Walker, Theresa Tran, Lesley McGee, and Bernard BeallComments to Author 
Author affiliations: Centers for Disease Control and Prevention, Atlanta, Georgia, USA

Main Article

Table 1

WGS pipeline features of 199 invasive serotype 35B pneumococcal isolates, United States, 2015–2016 and 2 35B ST156 lineage isolates obtained during 2009 and 2012*

CC (no.)† ST No. PBP type‡ Non- PBP resistance determinants§ Antimicrobial resistance phenotype, μg/mL¶
States
Pen Amo Tax Cft Cfx Mer Ery Cli + Tet Cot Fq#
156 (21) 156 15** 4:12:7 mef, folAI100L, folPins178 2 4 1 1 >2 1 R S R S CT, GA, MN, NY, TN, MD
10174 1†† 4:7:18 mef, folAI100L, folPins178 2 1 1 1 >2 0.5 R S R S NM
11584 2 4:12:7 mef, folAI100L, folPins178 2 4 1 1 >2 1 R S R S TN
9910 1 4:12:7 mef, folAI100L, folPins178 2 4 1 1 >2 1 R S R S TN
162 1 0:0:0 None <0.03 <0.03 <0.06 <0.03 <0.5 <0.06 S S S S NM
12921 1 4:11:7 mef, folAI100L, folPins178 2 8 1 1 >2 1 R S R S TN
63 (1) 11818 1 4:31:114 ermB, tetM, folPins195 1 4 1 0.5 >2 0.5 R R I S MD
1092 (1) 1092 1 6:7:36 folAI100L, folPins195 1 1 0.5 1 >2 0.25 S S R S NM
452 (10) 452 8 0:0:0 None <0.03 <0.03 <0.06 <0.03 <0.5 <0.06 S S S S CA, CT, NM, OR
452 1 0:0:0 mef <0.03 <0.03 <0.06 <0.03 <0.5 <0.06 R S S S MD
452 1 0:0:148 None 0.06 ≤0.03 0.12 0.12 <0.5 <0.06 S S S S CO
558 (168) 558 104 4:7:7 mef 2 4 1 1 >2 0.5 R S S S CA, CO, CT, GA,MD,MN, NM, NY, TN
558 1 4:7:7 mef, ParC-D83Y, GyrA-S81Y 2 4 1 1 >2 0.5 R S S R TN
558 1 4:7:7 mef, ParC-D83Y 2 4 1 1 >2 0.5 R S S I MD
558 1 4:7:7 mef, ParC-S79F 2 4 1 1 >2 0.5 R S S I CT
558 1 4:7:7 mef, folPins186 2 4 1 1 >2 0.5 R S I S CA
558 22 4:7:7 None 2 4 1 1 >2 0.5 S S S S CA, CO, CT, GA, MD, MN, NM,TN
558 2 4:7:7 folAI100L 2 4 1 1 >2 0.5 S S I S GA, MD
558 1 4:7:7 folPins173 2 4 1 1 >2 0.5 S S I S TN
558 1 4:7:7 folPins189 2 4 1 1 >2 0.5 S S I S MD
558 1 4:7:7 folPins195 2 4 1 1 >2 0.5 S S I S NM
558 1 4:7:7 folAI100L, folPins180 2 4 1 1 >2 0.5 S S R S CO
558 1 4:7:7 folAI100L, folPins169 2 4 1 4 >2 0.5 S S R S CO
558 1 4:7:28 mef 0.12 <0.03 <0.06 0.06 <0.5 <0.06 R S S S CO
558 1 4:7:112 mef 2 2 1 1 >2 0.5 R S S S TN
558 1 4:7:133 mef 2 2 1 1 >2 0.5 R S S S GA
558 2 4:120:7 mef 2 4 1 1 >2 1 R S S S CT
558 1 4:123:7 mef 2 4 1 1 >2 0.5 R S S S NY
558 1 102:7:7 mef 2 2 1 1 >2 0.5 R S S S CT
558 1 106:7:7 None 1 1 0.5 0.5 >2 0.5 S S S S MD
558 1 4:135:7 folAI100L, folPins169 2 4 1 4 >2 0.5 S S R S CO
558 1 4:139:7 mef 2 4 1 4 >2 0.5 R S S S MN
6961 1 4:7:7 None 2 4 1 1 >2 0.5 S S S S MD
7486 1 4:7:7 mef 2 4 1 1 >2 0.5 R S S S TN
7487 1 4:49:7 None 2 8 1 1 >2 1 S S S S CT
10493 6 4:7:7 mef 2 4 1 1 >2 0.5 R S S S CT, GA, MD, NM
10493 1 4:7:7 mef, folAI100L 2 4 1 1 >2 0.5 R S I S NM
11250 1 4:14:7 folPins169 2 8 1 1 >2 1 S S I S GA
11254 2 4:7:7 folAI100L, folPins169 2 4 1 1 >2 0.5 R S R S CO, MD
11603 1 4:7:7 mef 2 4 1 1 >2 0.5 R S S S CT
11604 1 4:7:7 mef 2 4 1 1 >2 0.5 R S S S MD
11606 1 4:7:7 None 2 4 1 1 >2 0.5 S S S S CO
11866 1 4:7:7 mef 2 4 1 1 >2 0.5 R S S S GA
12854 1 4:7:7 mef 2 4 1 1 >2 0.5 R S S S GA
12883 1 4:7:7 20L 2 4 1 1 >2 0.5 S S I S MN
12885 1 4:7:7 mef 2 4 1 1 >2 0.5 R S S S CT
12922 1 4:142:7 None 4 8 1 2 >2 >1 S S S S MD

*All isolates were positive for pilus PI-type 1 and negative for pilus PI-type 2. CC, clonal complex; I, intermediate resistance; MLST, multilocus sequence type; PBP, penicillin-binding protein; R, resistant; S, susceptible; ST, sequence type; WGS, whole-genome sequencing.
†CCs that probably arose through serotype switching are indicated in bold.
‡MIC correlates for PBP types (http://www.cdc.gov/streptlab/mic-tables.html (15). Variant PBPs potentially contributing to increased MICs relative to 4:7:7 or 0:0:0 are indicated in bold. Three isolates yielded only partial PBP types because of genomic assembly error, but were assigned PBP type 4:7:7 because of partial identity and consistent phenotypic β-lactam MIC profile.
§For a description of WGS-based bioinformatic pipeline for deduction of all features shown, see Gertz et al (4) and Desai et al. (7). For a description of folP insertions (folPins169), see Figure 1 in Gertz et al. (4).
¶Predicted MICs for β-lactam antimicrobial drugs were based on transpeptidase domain sequences of PBPs 1a, 2b, and 2x (http://www.cdc.gov/streplab/mic-tables.html). For penicillin (meningitis only), nonsusceptible is considered >0.12 μg/mL (16). Currently applied clinical cutoffs are also provided for the other 5 β-lactams shown (16). Where shown, I, R, and S correspond to breakpoint MIC values (16). Increased MICs potentially attributable to PBP type alterations are indicated in bold. Amo, amoxicillin; Cft, ceftriaxone; Cfx, cefuroxime; Cli, clindamycin; Cot, cotrimoxazole; Ery, erythromycin; Fq, fluoroquinolones levofloxacin and ciprofloxacin; Mer, meropenem; Pen, penicillin; Tax, cefotaxime.
#MIC of 4 μg/mL for ciprofloxacin is considered intermediate resistance.
**Includes single putative progenitor strain (2012221165) isolated from a 4-y-old child during 2012 (Figure 2).
††2009219987 was isolated from an infant in New Mexico during 2009 (Figure 2).

Main Article

References
  1. Pilishvili  T, Lexau  C, Farley  MM, Hadler  J, Harrison  LH, Bennett  NM, et al.; Active Bacterial Core Surveillance/Emerging Infections Program Network. Sustained reductions in invasive pneumococcal disease in the era of conjugate vaccine. J Infect Dis. 2010;201:3241. DOIPubMedGoogle Scholar
  2. Moore  MR, Link-Gelles  R, Schaffner  W, Lynfield  R, Lexau  C, Bennett  NM, et al. Effect of use of 13-valent pneumococcal conjugate vaccine in children on invasive pneumococcal disease in children and adults in the USA: analysis of multisite, population-based surveillance. Lancet Infect Dis. 2015;15:3019. DOIPubMedGoogle Scholar
  3. Beall  B, McEllistrem  MC, Gertz  RE Jr, Boxrud  DJ, Besser  JM, Harrison  LH, et al.; Active Bacterial Core Surveillance/Emerging Infections Program Network. Emergence of a novel penicillin-nonsusceptible, invasive serotype 35B clone of Streptococcus pneumoniae within the United States. J Infect Dis. 2002;186:11822. DOIPubMedGoogle Scholar
  4. Gertz  RE Jr, Li  Z, Pimenta  FC, Jackson  D, Juni  BA, Lynfield  R, et al. Increased penicillin-nonsusceptibility of nonvaccine serotype (other than 19A and 6A) invasive pneumococci in post 7 valent conjugate vaccine era. J Infect Dis. 2010;201:7705. DOIPubMedGoogle Scholar
  5. Sharma  D, Baughman  W, Holst  A, Thomas  S, Jackson  D, da Gloria Carvalho  M, et al. Pneumococcal carriage and invasive disease in children before introduction of the 13-valent conjugate vaccine: comparison with the era before 7-valent conjugate vaccine. Pediatr Infect Dis J. 2013;32:e4553. DOIPubMedGoogle Scholar
  6. Metcalf  BJ, Gertz  RE Jr, Gladstone  RA, Walker  H, Sherwood  LK, Jackson  D, et al. Active Bacterial Core surveillance team. Strain features and distributions in pneumococci from children with invasive disease before and after 13-valent conjugate vaccine implementation in the USA. Clin Microbiol Infect. 2016;22:60.e929. DOIGoogle Scholar
  7. Desai  AP, Sharma  D, Crispell  EK, Baughman  W, Thomas  S, Tunali  A, et al. Decline in pneumococcal nasopharyngeal carriage of vaccine serotypes after the introduction of the 13-valent pneumococcal conjugate vaccine in children in Atlanta, Georgia. Pediatr Infect Dis J. 2015;34:116874. DOIPubMedGoogle Scholar
  8. Kaur  R, Casey  JR, Pichichero  ME. Emerging Streptococcus pneumoniae strains colonizing the nasopharynx in children after 13-valent pneumococcal conjugate vaccination in comparison to the 7-valent era, 2006–2015. Pediatr Infect Dis J. 2016;35:9016. DOIPubMedGoogle Scholar
  9. Kawaguchiya  M, Urushibara  N, Kobayashi  N. Multidrug resistance in non-PCV13 serotypes of Streptococcus pneumoniae in northern Japan, 2014. Microb Drug Resist. 2017;23:20614. DOIPubMedGoogle Scholar
  10. McElligott  M, Vickers  I, Meehan  M, Cafferkey  M, Cunney  R, Humphreys  H. Noninvasive pneumococcal clones associated with antimicrobial nonsusceptibility isolated from children in the era of conjugate vaccines. Antimicrob Agents Chemother. 2015;59:57617. DOIPubMedGoogle Scholar
  11. Golden  AR, Adam  HJ, Gilmour  MW, Baxter  MR, Martin  I, Nichol  KA, et al. Assessment of multidrug resistance, clonality and virulence in non-PCV-13 Streptococcus pneumoniae serotypes in Canada, 2011-13. J Antimicrob Chemother. 2015;70:19604.PubMedGoogle Scholar
  12. Metcalf  BJ, Chochua  S, Gertz  RE Jr, Li  Z, Walker  H, Tran  T, et al. Active Bacterial Core surveillance team. Using whole genome sequencing to identify resistance determinants and predict antimicrobial resistance phenotypes for year 2015 invasive pneumococcal disease isolates recovered in the United States. Clin Microbiol Infect. 2016;22:1002.e18. DOIGoogle Scholar
  13. Beall  B, McEllistrem  MC, Gertz  RE Jr, Wedel  S, Boxrud  DJ, Gonzalez  AL, et al.; Active Bacterial Core Surveillance Team. Pre- and postvaccination clonal compositions of invasive pneumococcal serotypes for isolates collected in the United States in 1999, 2001, and 2002. J Clin Microbiol. 2006;44:9991017. DOIPubMedGoogle Scholar
  14. Beall  BW, Gertz  RE, Hulkower  RL, Whitney  CG, Moore  MR, Brueggemann  AB. Shifting genetic structure of invasive serotype 19A pneumococci in the United States. J Infect Dis. 2011;203:13608. DOIPubMedGoogle Scholar
  15. Li  Y, Metcalf  BJ, Chochua  S, Li  Z, Gertz  RE Jr, Walker  H, et al. Penicillin-binding protein transpeptidase signatures for tracking and predicting β-lactam resistance levels in Streptococcus pneumoniae. MBio. 2016;7:e0075616. DOIPubMedGoogle Scholar
  16. Clinical and Laboratory Standards Institute (CLSI). Performance standards for antimicrobial susceptibility testing. Twenty-third informational supplement (M100–S22.CLSI). Wayne (PA): The Institute; 2013.
  17. Martin  M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. 2011;17:102. DOIGoogle Scholar
  18. Zerbino  DR, Birney  E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 2008;18:8219. DOIPubMedGoogle Scholar
  19. Gardner  SN, Slezak  T, Hall  BG. kSNP3.0: SNP detection and phylogenetic analysis of genomes without genome alignment or reference genome. Bioinformatics. 2015;31:28778. DOIPubMedGoogle Scholar
  20. Stamatakis  A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:13123. DOIPubMedGoogle Scholar
  21. Feil  EJ, Li  BC, Aanensen  DM, Hanage  WP, Spratt  BG. eBURST: inferring patterns of evolutionary descent among clusters of related bacterial genotypes from multilocus sequence typing data. J Bacteriol. 2004;186:151830. DOIPubMedGoogle Scholar
  22. Barocchi  MA, Ries  J, Zogaj  X, Hemsley  C, Albiger  B, Kanth  A, et al. A pneumococcal pilus influences virulence and host inflammatory responses. Proc Natl Acad Sci U S A. 2006;103:285762. DOIPubMedGoogle Scholar
  23. Coffey  TJ, Daniels  M, Enright  MC, Spratt  BG. Serotype 14 variants of the Spanish penicillin-resistant serotype 9V clone of Streptococcus pneumoniae arose by large recombinational replacements of the cpsA-pbp1a region. Microbiology. 1999;145:202331. DOIPubMedGoogle Scholar
  24. Brueggemann  AB, Pai  R, Crook  DW, Beall  B. Vaccine escape recombinants emerge after pneumococcal vaccination in the United States. PLoS Pathog. 2007;3:e168. DOIPubMedGoogle Scholar
  25. Wyres  KL, Lambertsen  LM, Croucher  NJ, McGee  L, von Gottberg  A, Liñares  J, et al. Pneumococcal capsular switching: a historical perspective. J Infect Dis. 2013;207:43949. DOIPubMedGoogle Scholar
  26. Mavroidi  A, Aanensen  DM, Godoy  D, Skovsted  IC, Kaltoft  MS, Reeves  PR, et al. Genetic relatedness of the Streptococcus pneumoniae capsular biosynthetic loci. J Bacteriol. 2007;189:784155. DOIPubMedGoogle Scholar
  27. Golubchik  T, Brueggemann  AB, Street  T, Gertz  RE Jr, Spencer  CC, Ho  T, et al. Pneumococcal genome sequencing tracks a vaccine escape variant formed through a multi-fragment recombination event. Nat Genet. 2012;44:3525. DOIPubMedGoogle Scholar
  28. Enright  MC, Spratt  BG. Extensive variation in the ddl gene of penicillin-resistant Streptococcus pneumoniae results from a hitchhiking effect driven by the penicillin-binding protein 2b gene. Mol Biol Evol. 1999;16:168795. DOIPubMedGoogle Scholar
  29. Kauffmann  F, Mørch  E, Schmith  K. On the serology of the pneumococcus-group. J Immunol. 1940;39:397426.
  30. Lund  E. On the nomenclature of the pneumococcal types. Int J Syst Bacteriol. 1970;20:3213. DOIGoogle Scholar
  31. Henrichsen  J. Six newly recognized types of Streptococcus pneumoniae. J Clin Microbiol. 1995;33:275962.PubMedGoogle Scholar
  32. Kim  L, McGee  L, Tomczyk  S, Beall  B. Biological and epidemiological features of antibiotic-resistant Streptococcus pneumoniae in pre- and post-conjugate vaccine eras: a United States perspective. Clin Microbiol Rev. 2016;29:52552. DOIPubMedGoogle Scholar
  33. Olarte  L, Kaplan  SL, Barson  WJ, Romero  JR, Lin  PL, Tan  TQ, et al. Emergence of multidrug-resistant pneumococcal serotype 35B among children in the United States. J Clin Microbiol. 2017;55:72434. DOIPubMedGoogle Scholar
  34. Moore  MR, Gertz  RE Jr, Woodbury  RL, Barkocy-Gallagher  GA, Schaffner  W, Lexau  C, et al. Population snapshot of emergent Streptococcus pneumoniae serotype 19A in the United States, 2005. J Infect Dis. 2008;197:101627. DOIPubMedGoogle Scholar
  35. Sobanjo-ter Meulen  A, Vesikari  T, Malacaman  EA, Shapiro  SA, Dallas  MJ, Hoover  PA, et al. Safety, tolerability and immunogenicity of 15-valent pneumococcal conjugate vaccine in toddlers previously vaccinated with 7-valent pneumococcal conjugate vaccine. Pediatr Infect Dis J. 2015;34:18694. DOIPubMedGoogle Scholar

Main Article

Page created: May 16, 2017
Page updated: May 16, 2017
Page reviewed: May 16, 2017
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external