Volume 24, Number 12—December 2018
Research
Survey of Ebola Viruses in Frugivorous and Insectivorous Bats in Guinea, Cameroon, and the Democratic Republic of the Congo, 2015–2017
Table 5
Family | Species | Country | Year of study (reference) | Test | No. tested | No. (%) positive† | Total, no. positive/tested (%)† |
---|---|---|---|---|---|---|---|
Emballonuridae | Coleura afra | Cameroon | 2015–2017‡ | Luminex | 5 | 0–0 (0–0) | 0/14 (0) |
Saccolaimus peli |
DRC |
1979–1980 (26) |
IFA |
9 |
0 (0) |
||
Hipposideridae | Hipposideros sp. | DRC | 2015–2017‡ | Luminex | 157 | 0–0 (0–0) | 0/1,395 (0) |
Hipposideros sp. | Cameroon | 2015–2017‡ | Luminex | 837 | 0–0 (0–0) | ||
Hipposideros sp. | DRC | 1979–1980 (26) | IFA | 69 | 0 (0) | ||
Hipposideros sp. | Guinea | 2015–2017‡ | Luminex | 288 | 0–0 (0–0) | ||
Hipposideros sp. |
Guinea |
2014 (11) |
ELISA |
44 |
0 (0) |
||
Miniopteridae | Miniopterus sp. | Guinea | 2015–2017‡ | Luminex | 27 | 0–0 (0–0) | 0/234 (0) |
Miniopterus sp. | DRC | 2015–2017‡ | Luminex | 205 | 0–0 (0–0) | ||
M. minor |
DRC |
1995 (27) |
ELISA |
2 |
0 (0) |
||
Molossidae | Chaerephon sp. | Guinea | 2015–2017‡ | Luminex | 44 | 0–0 (0–0) | 0/401 (0) |
C. pumilus | Guinea | 2014 (11) | ELISA | 1 | 0 (0) | ||
C. ansorgei | DRC | 1995 (27) | ELISA | 120 | 0 (0) | ||
C. major | DRC | 1979–1980 (26) | IFA | 26 | 0 (0) | ||
C. pumilus |
DRC |
1995 (27) |
Elisa |
210 |
0 (0) |
||
Mops sp. | Guinea | 2015–2017‡ | Luminex | 230 | 0–0 (0–0) | 4–9/705 (0.6–1.3) | |
Mops sp. | Cameroon | 2015–2017‡ | Luminex | 264 | 1–6 (0.4–2.3) | ||
Mops sp. | DRC | 1979–1980 (26) | IFA | 158 | 0 (0) | ||
Mops sp. | DRC | 1995 (27) | ELISA | 28 | 0 (0) | ||
Mops condylurus | Gabon | 2003–2008 (13) | ELISA | 24 | 3 (12.5) | ||
M. condylurus | Guinea | 2014 (11) | ELISA | 1 | 0 (0) | ||
Myopterus whitleyi |
DRC |
1995 (27) |
ELISA |
2 |
0 (0) |
||
Nycteridae | Nycteris sp. | Guinea | 2015–2017‡ | Luminex | 15 | 0–0 (0–0) | 0/43 (0) |
Nycteris sp. | Guinea | 2014 (11) | ELISA | 6 | 0 (0) | ||
Nycteris sp. | Cameroon | 2015–2017‡ | Luminex | 7 | 0–0 (0–0) | ||
Nycteris sp. | DRC | 1979–1980 (26) | IFA | 14 | 0 (0) | ||
Nycteris hispida |
DRC |
1995 (27) |
ELISA |
1 |
0 (0) |
||
Rhinolophidae | Rhinolophus sp. | Guinea | 2015–2017‡ | Luminex | 26 | 0–0 (0–0) | 0/86 (0) |
Rhinolophus sp. | DRC | 2015–2017‡ | Luminex | 6 | 0–0 (0–0) | ||
Rhinolophus sp. |
Cameroon |
2015–2017‡ |
Luminex |
54 |
0–0 (0–0) |
||
Vespertilionidae | Glauconycteris variegata | Cameroon | 2015–2017‡ | Luminex | 3 | 0–0 (0–0) | 0/143 (0) |
Chalinolobus sp. | DRC | 1979–1980 (26) | IFA | 15 | 0 (0) | ||
Eptesicus sp. | DRC | 1979–1980 (26) | IFA | 22 | 0 (0) | ||
Eptesicus tenuipinnis | DRC | 1995 (27) | ELISA | 1 | 0 (0) | ||
Kerivoula sp. | Guinea | 2014 (11) | ELISA | 1 | 0 (0) | ||
Kerivoula sp. | Cameroon | 2015–2017‡ | Luminex | 1 | 0–0 (0–0) | ||
Myotis bocagii | Cameroon | 2015–2017‡ | Luminex | 3 | 0–0 (0–0) | ||
M. bocagii | DRC | 1995 (27) | ELISA | 22 | 0 (0) | ||
M. bocagii | DRC | 1979–1980 (26) | IFA | 17 | 0 (0) | ||
Neoromicia sp. | Cameroon | 2015–2017‡ | Luminex | 5 | 0–0 (0–0) | ||
Pipistrellus nanus | DRC | 1995 (27) | ELISA | 2 | 0 (0) | ||
Scotophilus nux | Cameroon | 2015–2017‡ | Luminex | 6 | 0–0 (0–0) | ||
Scotophilus leucogaster | Guinea | 2015–2017‡ | Luminex | 15 | 0–0 (0–0) | ||
Scotophilus nigrita | Guinea | 2015–2017‡ | Luminex | 1 | 0–0 (0–0) | ||
Scotophilus dinganii | DRC | 1995 (27) | ELISA | 19 | 0 (0) | ||
Scotophilus sp. |
DRC |
1979–1980 (26) |
IFA |
10 |
0 (0) |
||
Total | 4–9/3,023 (0.13–0.30) |
*DRC, the Democratic Republic of the Congo; IFA, immunofluorescence assay.
†For data from cited studies, the number of positive samples reported in the original study is indicated. For our results, we show the range in the number of samples simultaneously reactive with glycoprotein and nucleoprotein of Zaire Ebola virus on the basis of 4 different statistical methods used to determine cutoff values.
‡This study.
References
- Mylne A, Brady OJ, Huang Z, Pigott DM, Golding N, Kraemer MU, et al. A comprehensive database of the geographic spread of past human Ebola outbreaks. Sci Data. 2014;1:140042. DOIPubMedGoogle Scholar
- Baize S, Pannetier D, Oestereich L, Rieger T, Koivogui L, Magassouba N, et al. Emergence of Zaire Ebola virus disease in Guinea. N Engl J Med. 2014;371:1418–25. DOIPubMedGoogle Scholar
- Maganga GD, Kapetshi J, Berthet N, Kebela Ilunga B, Kabange F, Mbala Kingebeni P, et al. Ebola virus disease in the Democratic Republic of Congo. N Engl J Med. 2014;371:2083–91. DOIPubMedGoogle Scholar
- World Health Organization. Ebola outbreak Democratic Republic of the Congo 2017. 2017 Jul 2 [cited 2018 May 3]. http://www.who.int/emergencies/ebola-DRC-2017/en/
- Pigott DM, Millear AI, Earl L, Morozoff C, Han BA, Shearer FM, et al. Updates to the zoonotic niche map of Ebola virus disease in Africa. eLife. 2016;5:e16412. DOIPubMedGoogle Scholar
- Leroy EM, Kumulungui B, Pourrut X, Rouquet P, Hassanin A, Yaba P, et al. Fruit bats as reservoirs of Ebola virus. Nature. 2005;438:575–6. DOIPubMedGoogle Scholar
- Leendertz SA, Gogarten JF, Düx A, Calvignac-Spencer S, Leendertz FH. Assessing the evidence supporting fruit bats as the primary reservoirs for Ebola viruses. EcoHealth. 2016;13:18–25. DOIPubMedGoogle Scholar
- Kamins AO, Rowcliffe JM, Ntiamoa-Baidu Y, Cunningham AA, Wood JL, Restif O. Characteristics and risk perceptions of Ghanaians potentially exposed to bat-borne zoonoses through bushmeat. EcoHealth. 2015;12:104–20. DOIPubMedGoogle Scholar
- Gonzalez JP, Pourrut X, Leroy E. Ebolavirus and other filoviruses. Curr Top Microbiol Immunol. 2007;315:363–87. DOIPubMedGoogle Scholar
- Leroy EM, Epelboin A, Mondonge V, Pourrut X, Gonzalez JP, Muyembe-Tamfum JJ, et al. Human Ebola outbreak resulting from direct exposure to fruit bats in Luebo, Democratic Republic of Congo, 2007. Vector Borne Zoonotic Dis. 2009;9:723–8. DOIPubMedGoogle Scholar
- Marí Saéz A, Weiss S, Nowak K, Lapeyre V, Zimmermann F, Düx A, et al. Investigating the zoonotic origin of the West African Ebola epidemic. EMBO Mol Med. 2015;7:17–23. DOIPubMedGoogle Scholar
- Pourrut X, Délicat A, Rollin PE, Ksiazek TG, Gonzalez JP, Leroy EM. Spatial and temporal patterns of Zaire ebolavirus antibody prevalence in the possible reservoir bat species. J Infect Dis. 2007;196(Suppl 2):S176–83. DOIPubMedGoogle Scholar
- Pourrut X, Souris M, Towner JS, Rollin PE, Nichol ST, Gonzalez JP, et al. Large serological survey showing cocirculation of Ebola and Marburg viruses in Gabonese bat populations, and a high seroprevalence of both viruses in Rousettus aegyptiacus. BMC Infect Dis. 2009;9:159. DOIPubMedGoogle Scholar
- Hayman DT, Emmerich P, Yu M, Wang LF, Suu-Ire R, Fooks AR, et al. Long-term survival of an urban fruit bat seropositive for Ebola and Lagos bat viruses. PLoS One. 2010;5:e11978. DOIPubMedGoogle Scholar
- Hayman DT, Yu M, Crameri G, Wang LF, Suu-Ire R, Wood JL, et al. Ebola virus antibodies in fruit bats, Ghana, West Africa. Emerg Infect Dis. 2012;18:1207–9. DOIPubMedGoogle Scholar
- Ogawa H, Miyamoto H, Nakayama E, Yoshida R, Nakamura I, Sawa H, et al. Seroepidemiological prevalence of multiple species of filoviruses in fruit bats (Eidolon helvum) migrating in Africa. J Infect Dis. 2015;212(Suppl 2):S101–8. DOIPubMedGoogle Scholar
- Towner JS, Pourrut X, Albariño CG, Nkogue CN, Bird BH, Grard G, et al. Marburg virus infection detected in a common African bat. PLoS One. 2007;2:e764. DOIPubMedGoogle Scholar
- Towner JS, Amman BR, Sealy TK, Carroll SA, Comer JA, Kemp A, et al. Isolation of genetically diverse Marburg viruses from Egyptian fruit bats. PLoS Pathog. 2009;5:e1000536. DOIPubMedGoogle Scholar
- Kuzmin IV, Niezgoda M, Franka R, Agwanda B, Markotter W, Breiman RF, et al. Marburg virus in fruit bat, Kenya. Emerg Infect Dis. 2010;16:352–4. DOIPubMedGoogle Scholar
- Swanepoel R, Smit SB, Rollin PE, Formenty P, Leman PA, Kemp A, et al.; International Scientific and Technical Committee for Marburg Hemorrhagic Fever Control in the Democratic Republic of Congo. Studies of reservoir hosts for Marburg virus. Emerg Infect Dis. 2007;13:1847–51. DOIPubMedGoogle Scholar
- Negredo A, Palacios G, Vázquez-Morón S, González F, Dopazo H, Molero F, et al. Discovery of an ebolavirus-like filovirus in europe. PLoS Pathog. 2011;7:e1002304. DOIPubMedGoogle Scholar
- Yang XL, Zhang YZ, Jiang RD, Guo H, Zhang W, Li B, et al. Genetically diverse filoviruses in Rousettus and Eonycteris spp. bats, China, 2009 and 2015. Emerg Infect Dis. 2017;23:482–6. DOIPubMedGoogle Scholar
- World Health Organization. Ebola situation report - 30 March 2016. 2016 [cited 2018 May 3].http://apps.who.int./ebola/current-situation/ebola-situation-report-30-march-2016
- Dudas G, Carvalho LM, Bedford T, Tatem AJ, Baele G, Faria NR, et al. Virus genomes reveal factors that spread and sustained the Ebola epidemic. Nature. 2017;544:309–15. DOIPubMedGoogle Scholar
- Pigott DM, Deshpande A, Letourneau I, Morozoff C, Reiner RC Jr, Kraemer MUG, et al. Local, national, and regional viral haemorrhagic fever pandemic potential in Africa: a multistage analysis. Lancet. 2017;390:2662–72. DOIPubMedGoogle Scholar
- Breman JG, Johnson KM, van der Groen G, Robbins CB, Szczeniowski MV, Ruti K, et al.; Ebola Virus Study Teams. A search for Ebola virus in animals in the Democratic Republic of the Congo and Cameroon: ecologic, virologic, and serologic surveys, 1979-1980. J Infect Dis. 1999;179(Suppl 1):S139–47. DOIPubMedGoogle Scholar
- Leirs H, Mills JN, Krebs JW, Childs JE, Akaibe D, Woollen N, et al. Search for the Ebola virus reservoir in Kikwit, Democratic Republic of the Congo: reflections on a vertebrate collection. J Infect Dis. 1999;179(Suppl 1):S155–63. DOIPubMedGoogle Scholar
- Ayouba A, Touré A, Butel C, Keita AK, Binetruy F, Sow MS, et al. Development of a sensitive and specific serological assay based on luminex technology for detection of antibodies to Zaire Ebola virus. J Clin Microbiol. 2016;55:165–76. DOIPubMedGoogle Scholar
- Peel AJ, McKinley TJ, Baker KS, Barr JA, Crameri G, Hayman DT, et al. Use of cross-reactive serological assays for detecting novel pathogens in wildlife: assessing an appropriate cutoff for henipavirus assays in African bats. J Virol Methods. 2013;193:295–303. DOIPubMedGoogle Scholar
- Gilbert AT, Fooks AR, Hayman DT, Horton DL, Müller T, Plowright R, et al. Deciphering serology to understand the ecology of infectious diseases in wildlife. EcoHealth. 2013;10:298–313. DOIPubMedGoogle Scholar
- Lardeux F, Torrico G, Aliaga C. Calculation of the ELISA’s cut-off based on the change-point analysis method for detection of Trypanosoma cruzi infection in Bolivian dogs in the absence of controls. Mem Inst Oswaldo Cruz. 2016;111:501–4. DOIPubMedGoogle Scholar
- Killick R, Eckley IA. changepoint: an R package for changepoint analysis. J Stat Softw. 2014;58:1–19. DOIGoogle Scholar
- Hinkley DV. Inference about the change-point in a sequence of random variables. Biometrika. 1970;57:1–17. DOIGoogle Scholar
- Laing ED, Mendenhall IH, Linster M, Low DHW, Chen Y, Yan L, et al. Serologic evidence of fruit bat exposure to filoviruses, Singapore, 2011–2016. Emerg Infect Dis. 2018;24:114–7. DOIPubMedGoogle Scholar
- Cullen AC, Frey HC. Probabilistic techniques in exposure assessment. New York: Plenum Press; 1999. p. 81–159.
- Delignette-Muller ML, Dutang C. fitdistrplus: an R package for fitting distributions. J Stat Softw. 2015;64:1–34. DOIGoogle Scholar
- Monleau M, Montavon C, Laurent C, Segondy M, Montes B, Delaporte E, et al. Evaluation of different RNA extraction methods and storage conditions of dried plasma or blood spots for human immunodeficiency virus type 1 RNA quantification and PCR amplification for drug resistance testing. J Clin Microbiol. 2009;47:1107–18. DOIPubMedGoogle Scholar
- Guichet E, Serrano L, Laurent C, Eymard-Duvernay S, Kuaban C, Vidal L, et al. Comparison of different nucleic acid preparation methods to improve specific HIV-1 RNA isolation for viral load testing on dried blood spots. J Virol Methods. 2018;251:75–9. DOIPubMedGoogle Scholar
- Irwin DM, Kocher TD, Wilson AC. Evolution of the cytochrome b gene of mammals. J Mol Evol. 1991;32:128–44. DOIPubMedGoogle Scholar
- Kocher TD, Thomas WK, Meyer A, Edwards SV, Pääbo S, Villablanca FX, et al. Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers. Proc Natl Acad Sci U S A. 1989;86:6196–200. DOIPubMedGoogle Scholar
- He B, Feng Y, Zhang H, Xu L, Yang W, Zhang Y, et al. Filovirus RNA in fruit bats, China. Emerg Infect Dis. 2015;21:1675–7. DOIPubMedGoogle Scholar
- Han BA, Schmidt JP, Alexander LW, Bowden SE, Hayman DT, Drake JM. Undiscovered bat hosts of filoviruses. PLoS Negl Trop Dis. 2016;10:e0004815. DOIPubMedGoogle Scholar
- Rimoin AW, Lu K, Bramble MS, Steffen I, Doshi RH, Hoff NA, et al. Ebola virus neutralizing antibodies detectable in survivors of theYambuku, Zaire outbreak 40 years after infection. J Infect Dis. 2018;217:223–31. DOIPubMedGoogle Scholar
- Paweska JT, Storm N, Grobbelaar AA, Markotter W, Kemp A, Jansen van Vuren P. Experimental inoculation of Egyptian fruit bats (Rousettus aegyptiacus) with Ebola virus. Viruses. 2016;8:29. DOIPubMedGoogle Scholar
- Amman BR, Jones ME, Sealy TK, Uebelhoer LS, Schuh AJ, Bird BH, et al. Oral shedding of Marburg virus in experimentally infected Egyptian fruit bats (Rousettus aegyptiacus). J Wildl Dis. 2015;51:113–24. DOIPubMedGoogle Scholar
- Schuh AJ, Amman BR, Jones ME, Sealy TK, Uebelhoer LS, Spengler JR, et al. Modelling filovirus maintenance in nature by experimental transmission of Marburg virus between Egyptian rousette bats. Nat Commun. 2017;8:14446. DOIPubMedGoogle Scholar
- Jones ME, Schuh AJ, Amman BR, Sealy TK, Zaki SR, Nichol ST, et al. Experimental inoculation of Egyptian rousette bats (Rousettus aegyptiacus) with viruses of the Ebolavirus and Marburgvirus genera. Viruses. 2015;7:3420–42. DOIPubMedGoogle Scholar
- Swanepoel R, Leman PA, Burt FJ, Zachariades NA, Braack LE, Ksiazek TG, et al. Experimental inoculation of plants and animals with Ebola virus. Emerg Infect Dis. 1996;2:321–5. DOIPubMedGoogle Scholar
- Storm N, Jansen Van Vuren P, Markotter W, Paweska JT. Antibody responses to Marburg virus in Egyptian rousette bats and their role in protection against infection. Viruses. 2018;10:73. DOIPubMedGoogle Scholar
1These first authors contributed equally to this article.
2These senior authors contributed equally to this article.
Page created: November 20, 2018
Page updated: November 20, 2018
Page reviewed: November 20, 2018
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.