Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 24, Number 8—August 2018
Research

Susceptibility of Human Prion Protein to Conversion by Chronic Wasting Disease Prions

Marcelo A. BarriaComments to Author , Adriana Libori, Gordon Mitchell, and Mark W. Head
Author affiliations: National CJD Research and Surveillance Unit, University of Edinburgh, Edinburgh, Scotland, UK (M.A. Barria, A. Libori, M.W. Head); National and OIE Reference Laboratory for Scrapie and CWD, Canadian Food Inspection Agency, Ottawa, Ontario, Canada (G. Mitchell)

Main Article

Figure 2

Evaluation of the in vitro conversion of human prion protein (PrP) seeded with the misfolded, disease-associated prion protein form present in chronic wasting disease (CWD)–affected elk brain samples. Western blot analysis for PrP with odd and even number lanes showing reaction mixtures before and after protein misfolding cyclic amplification. A) We incubated 5 elk CWD specimens (elk 0–4) homozygous for Prnp codon 132 methionine (MM) in Tg-HuMM brain substrate (diluted 1:3) and subjected them to

Figure 2. Evaluation of the in vitro conversion of human prion protein (PrP) seeded with the misfolded, disease-associated prion protein form present in chronic wasting disease (CWD)–affected elk brain samples. Western blot analysis for PrP with odd and even number lanes showing reaction mixtures before and after protein misfolding cyclic amplification. A) We incubated 5 elk CWD specimens (elk 0–4) homozygous for Prnp codon 132 methionine (MM) in Tg-HuMM brain substrate (diluted 1:3) and subjected them to a single round of protein misfolding cyclic amplification followed by proteinase K digestion. We performed Western blot analysis by using the mAb 3F4 (for the detection of human protease-resistant prion protein [PrPres]) and 6H4 (detection of CWD PrPres and human PrPres). B) We used a panel of 3 humanized transgenic substrates (Tg-HuMM, Tg-Hu-MV, and Tg-HuVV) to evaluate the susceptibility of the human PrP to conversion. We assessed 3 CWD elk seeds of the132 MM genotype and 2 of the 132 methionine–leucine (ML) genotype. We detected conversion of the human PrP by CWD prions by using the mAb 3F4 after proteinase K digestion. C) We detected total PrPres by using Western blot with mAb 6H4. The elk specimen previously reported (15) is designated elk 0. We performed >5 repeats for the amplification of elk CWD 132 MM seeds and >3 for the 132 ML specimens with similar results. Reference molecular markers have been included. Molecular mass of electrophoretic markers is given. mAb, monoclonal antibody; Tg-HuMM, humanized transgenic PRNP codon 129 homozygous methionine; Tg-HuMV, humanized transgenic methionine/valine; Tg-HuVV, humanized transgenic valine/valine.

Main Article

References
  1. Haley  NJ, Hoover  EA. Chronic wasting disease of cervids: current knowledge and future perspectives. Annu Rev Anim Biosci. 2015;3:30525. DOIGoogle Scholar
  2. Benestad  SL, Mitchell  G, Simmons  M, Ytrehus  B, Vikøren  T. First case of chronic wasting disease in Europe in a Norwegian free-ranging reindeer. Vet Res (Faisalabad). 2016;47:88. DOIGoogle Scholar
  3. Dagleish  MP. Chronic wasting disease of deer—is the battle to keep Europe free already lost? Vet Rec. 2016;179:1213. DOIGoogle Scholar
  4. Head  MW. Human prion diseases: molecular, cellular and population biology. Neuropathology. 2013;33:22136. DOIGoogle Scholar
  5. Cassard  H, Torres  JM, Lacroux  C, Douet  JY, Benestad  SL, Lantier  F, et al. Evidence for zoonotic potential of ovine scrapie prions. Nat Commun. 2014;5:5821. DOIGoogle Scholar
  6. Comoy  E, Mikol  J, Durand  V, Luccantoni  S, Correia  E, Lescoutra  N, et al. Transmission of prions to primates after extended silent incubation periods: implications for BSE and scrapie risk assessment in human populations. Prion. 2015;9(Suppl 1):S3S.
  7. Barria  MA, Ironside  JW, Head  MW. Exploring the zoonotic potential of animal prion diseases: in vivo and in vitro approaches. Prion. 2014;8:8591. DOIGoogle Scholar
  8. Marsh  RF, Kincaid  AE, Bessen  RA, Bartz  JC. Interspecies transmission of chronic wasting disease prions to squirrel monkeys (Saimiri sciureus). J Virol. 2005;79:137946. DOIGoogle Scholar
  9. Race  B, Meade-White  KD, Miller  MW, Barbian  KD, Rubenstein  R, LaFauci  G, et al. Susceptibilities of nonhuman primates to chronic wasting disease. Emerg Infect Dis. 2009;15:136676. DOIGoogle Scholar
  10. Kong  Q, Huang  S, Zou  W, Vanegas  D, Wang  M, Wu  D, et al. Chronic wasting disease of elk: transmissibility to humans examined by transgenic mouse models. J Neurosci. 2005;25:79449. DOIGoogle Scholar
  11. Sandberg  MK, Al-Doujaily  H, Sigurdson  CJ, Glatzel  M, O’Malley  C, Powell  C, et al. Chronic wasting disease prions are not transmissible to transgenic mice overexpressing human prion protein. J Gen Virol. 2010;91:26517. DOIGoogle Scholar
  12. Tamgüney  G, Giles  K, Bouzamondo-Bernstein  E, Bosque  PJ, Miller  MW, Safar  J, et al. Transmission of elk and deer prions to transgenic mice. J Virol. 2006;80:910414. DOIGoogle Scholar
  13. Wilson  R, Plinston  C, Hunter  N, Casalone  C, Corona  C, Tagliavini  F, et al. Chronic wasting disease and atypical forms of bovine spongiform encephalopathy and scrapie are not transmissible to mice expressing wild-type levels of human prion protein. J Gen Virol. 2012;93:16249. DOIGoogle Scholar
  14. Kong  Q, Cali  I, Qing  L, Yuan  J, Huang  S, Kofskey  D, et al. Zoonotic potential of CWD prions: an update. Presented at International Prion Conference 2016, Tokyo, Japan, May 10–13, 2016; Abstract O-15, p. 99.
  15. Barria  MA, Balachandran  A, Morita  M, Kitamoto  T, Barron  R, Manson  J, et al. Molecular barriers to zoonotic transmission of prions. Emerg Infect Dis. 2014;20:8897. DOIGoogle Scholar
  16. Jones  M, Wight  D, Barron  R, Jeffrey  M, Manson  J, Prowse  C, et al. Molecular model of prion transmission to humans. Emerg Infect Dis. 2009;15:20136. DOIGoogle Scholar
  17. Robinson  SJ, Samuel  MD, O’Rourke  KI, Johnson  CJ. The role of genetics in chronic wasting disease of North American cervids. Prion. 2012;6:15362. DOIGoogle Scholar
  18. Mitchell  GB, Sigurdson  CJ, O’Rourke  KI, Algire  J, Harrington  NP, Walther  I, et al. Experimental oral transmission of chronic wasting disease to reindeer (Rangifer tarandus tarandus). PLoS One. 2012;7:e39055. DOIGoogle Scholar
  19. Bishop  MT, Hart  P, Aitchison  L, Baybutt  HN, Plinston  C, Thomson  V, et al. Predicting susceptibility and incubation time of human-to-human transmission of vCJD. Lancet Neurol. 2006;5:3938. DOIGoogle Scholar
  20. Yokoyama  T, Takeuchi  A, Yamamoto  M, Kitamoto  T, Ironside  JW, Morita  M. Heparin enhances the cell-protein misfolding cyclic amplification efficiency of variant Creutzfeldt-Jakob disease. Neurosci Lett. 2011;498:11923. DOIGoogle Scholar
  21. Chen  B, Morales  R, Barria  MA, Soto  C. Estimating prion concentration in fluids and tissues by quantitative PMCA. Nat Methods. 2010;7:51920. DOIGoogle Scholar
  22. Krejciova  Z, Barria  MA, Jones  M, Ironside  JW, Jeffrey  M, González  L, et al. Genotype-dependent molecular evolution of sheep bovine spongiform encephalopathy (BSE) prions in vitro affects their zoonotic potential. J Biol Chem. 2014;289:2607588. DOIGoogle Scholar
  23. Kurt  TD, Jiang  L, Fernández-Borges  N, Bett  C, Liu  J, Yang  T, et al. Human prion protein sequence elements impede cross-species chronic wasting disease transmission. J Clin Invest. 2015;125:148596. DOIGoogle Scholar
  24. Barria  MA, Telling  GC, Gambetti  P, Mastrianni  JA, Soto  C. Generation of a new form of human PrPSc in vitro by interspecies transmission from cervid prions. J Biol Chem. 2011;286:74905. DOIGoogle Scholar
  25. Hamir  AN, Gidlewski  T, Spraker  TR, Miller  JM, Creekmore  L, Crocheck  M, et al. Preliminary observations of genetic susceptibility of elk (Cervus elaphus nelsoni) to chronic wasting disease by experimental oral inoculation. J Vet Diagn Invest. 2006;18:1104. DOIGoogle Scholar
  26. Green  KM, Browning  SR, Seward  TS, Jewell  JE, Ross  DL, Green  MA, et al. The elk PRNP codon 132 polymorphism controls cervid and scrapie prion propagation. J Gen Virol. 2008;89:598608. DOIGoogle Scholar

Main Article

Page created: July 17, 2018
Page updated: July 17, 2018
Page reviewed: July 17, 2018
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external