Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 26, Number 8—August 2020

Factors Associated with Prescription of Antimicrobial Drugs for Dogs and Cats, United Kingdom, 2014–2016

David A. SingletonComments to Author , Gina L. Pinchbeck, Alan D. Radford, Elena Arsevska, Susan Dawson, Philip H. Jones, Peter-John M. Noble, Nicola J. Williams, and Fernando Sánchez-Vizcaíno
Author affiliations: University of Liverpool Leahurst Campus, Neston, UK (D.A. Singleton, G.L. Pinchbeck, A.D. Radford, E. Arsevska, S. Dawson, P.H. Jones, P.-J.M. Noble, N.J. Williams); Animal and Plant Health Agency, Shrewsbury, UK (P.H. Jones); University of Bristol Langford Campus, Bristol, UK (F. Sánchez-Vizcaíno)

Main Article

Table 4

Results from a multivariable mixed effect logistic regression model assessing the association between a range of categorical animal, owner, practitioner and practice-related factors and the probability of prescribing a topical antimicrobial in dogs, United Kingdom, 2014–2016*

Category β SE OR (95% CI) p value
England −4.01 0.07 0.02 (0.02–0.02) NA
Scotland −3.88 0.09 0.02 (0.02–0.02) NA
0.02 (0.01–0.02)
Categorical factors
Main presenting complaint
Gastroenteric - NA 1.00 NA
Kidney disease 0.71 0.22 2.03 (1.31–3.15) <0.01
Other unwell 2.41 0.07 11.18 (9.78–12.79) <0.01
Pruritus 3.24 0.07 25.64 (22.39–29.35) <0.01
Respiratory 0.63 0.11 1.88 (1.50–2.34) <0.01
Trauma 1.35 0.07 3.87 (3.36–4.46) <0.01
Tumor 1.15 0.08 3.16 (2.68–3.73) <0.01
F NA NA 1.00 NA
M 0.07 0.01 1.08 (1.05–1.10) <0.01
Microchip status
Not microchipped NA NA 1.00 NA
Microchipped 0.03 0.01 1.03 (1.00–1.06) 0.02
Vaccination status
Not vaccinated NA NA 1.00 NA
Vaccinated 0.08 0.02 1.08 (1.05–1.11) <0.01
Insurance status
Not insured NA NA 1.00 NA
Insured −0.10 0.02 0.90 (0.88–0.93) <0.01
Genetic breed group (29)
Retriever NA NA 1.00 NA
Ancient/spitz −0.14 0.06 0.87 (0.77–0.97) 0.02
Crossbreed −0.21 0.02 0.81 (0.78–0.84) <0.01
Herding −0.57 0.04 0.57 (0.53–0.61) <0.01
Mastiff-like −0.03 0.03 0.97 (0.93–1.03) 0.32
Scent hound −0.25 0.04 0.78 (0.71–0.85) <0.01
Sight hound −0.92 0.07 0.40 (0.34–0.46) <0.01
Small terrier −0.29 0.03 0.75 (0.71–0.79) <0.01
Spaniel 0.04 0.02 1.04 (1.00–1.09) 0.08
Toy −0.14 0.03 0.87 (0.82–0.93) <0.01
Unclassified −0.06 0.03 0.94 (0.89–0.99) 0.011
Unknown −0.31 0.06 0.74 (0.65–0.83) <0.01
Working dog −0.21 0.03 0.81 (0.76–0.87) <0.01
Hospital status
None NA NA 1.00 NA
>1 hospital site 0.06 0.04 1.07 (0.98–1.16) 0.15
Employed RCVS AVP
None NA NA 1.00 NA
>1 AVP 0.08 0.04 1.08 (0.99–1.17) 0.08
Employed RCVS specialists
None NA NA 1.00 NA
+ specialist
0.77 (0.64–0.92)
Continuous factors
Linear −0.10 0.09 0.91 (0.76–1.09) 0.30
Quadratic 0.04 0.04 1.04 (0.98–1.13) 0.39
1.04 (0.96–1.13)
Interaction terms
Main presenting complaint and age
Linear age interaction
Kidney disease −0.33 0.27 0.72 (0.42–1.22) 0.22
Other unwell −0.30 0.10 0.74 (0.61–0.89) <0.01
Pruritus 0.08 0.10 1.08 (0.89–1.31) 0.42
Respiratory −0.01 0.15 0.90 (0.66–1.21) 0.47
Trauma 0.01 0.10 1.01 (0.82–1.23) 0.95
Tumor −0.15 0.12 0.86 (0.69–1.08) 0.20
Quadratic age interaction
Kidney disease 0.04 0.15 1.04 (0.77–1.40) 0.79
Other unwell −0.11 0.05 0.90 (0.82–0.98) 0.02
Pruritus −0.00 0.05 1.00 (0.91–1.09) 0.96
Respiratory −0.12 0.08 0.89 (0.76–1.03) 0.11
Trauma −0.02 0.05 0.98 (0.89–1.08) 0.68
Tumor 0.14 0.06 1.15 (1.02–1.29) 0.02
Cubic age interaction
Kidney disease −0.01 0.11 0.99 (0.79–1.24) 0.94
Other unwell −0.04 0.04 0.97 (0.89–1.05) 0.39
Pruritus −0.06 0.04 0.94 (0.87–1.02) 0.15
Respiratory −0.01 0.07 0.99 (0.86–1.13) 0.84
Trauma −0.03 0.05 0.97 (0.89–1.06) 0.56
Tumor −0.02 0.05 0.98 (0.88–1.08) 0.64

*n = 40,030/281,543 sick consultations. Random effect variance (± SD): animal 0.55 (0.74), site 0.02 (0.14), practice 0.02 (0.16). Significant (p<0.05) results are displayed in boldface. AVP, Advanced Veterinary Practitioner and/or specialist status; NA, not applicable;OR, odds ratio.
RCVS, Royal College of Veterinary Surgeons.

Main Article

  1. Rantala  M, Lahti  E, Kuhalampil  J, Pesonen  S, Järvinen  AK, Saijonmaa-Koulumies , et al. Antimicrobial resistance in Staphylococcus spp., Escherichia coli and Enterococcus spp. in dogs given antibiotics for chronic dermatological disorders, compared with non-treated control dogs. Acta Vet Scand. 2004;45:3745. DOIPubMedGoogle Scholar
  2. Trott  DJ, Filippich  LJ, Bensink  JC, Downs  MT, McKenzie  SE, Townsend  KM, et al. Canine model for investigating the impact of oral enrofloxacin on commensal coliforms and colonization with multidrug-resistant Escherichia coli. J Med Microbiol. 2004;53:43943. DOIPubMedGoogle Scholar
  3. Cantón  R, Bryan  J. Global antimicrobial resistance: from surveillance to stewardship. Part 1: surveillance and risk factors for resistance. Expert Rev Anti Infect Ther. 2012;10:126971. DOIPubMedGoogle Scholar
  4. Cuny  C, Wieler  LH, Witte  W. Livestock-associated MRSA: the impact on humans. Antibiotics (Basel). 2015;4:52143. DOIPubMedGoogle Scholar
  5. Zhang  X-F, Doi  Y, Huang  X, Li  HY, Zhong  LL, Zeng  KJ, et al. Possible transmission of mcr-1-harboring Escherichia coli between companion animals and human. Emerg Infect Dis. 2016;22:167981. DOIPubMedGoogle Scholar
  6. Guardabassi  L, Schwarz  S, Lloyd  DH. Pet animals as reservoirs of antimicrobial-resistant bacteria. J Antimicrob Chemother. 2004;54:32132. DOIPubMedGoogle Scholar
  7. Guardabassi  L, Loeber  ME, Jacobson  A. Transmission of multiple antimicrobial-resistant Staphylococcus intermedius between dogs affected by deep pyoderma and their owners. Vet Microbiol. 2004;98:237. DOIPubMedGoogle Scholar
  8. Johnson  JR, Johnston  B, Clabots  CR, Kuskowski  MA, Roberts  E, DebRoy  C. Virulence genotypes and phylogenetic background of Escherichia coli serogroup O6 isolates from humans, dogs, and cats. J Clin Microbiol. 2008;46:41722. DOIPubMedGoogle Scholar
  9. World Health Organization. Global action plan on antimicrobial resistance [cited 2001 Jun 16].
  10. Altiner  A, Wilm  S, Wegscheider  K, Sielk  M, Brockmann  S, Fuchs  A, et al. Fluoroquinolones to treat uncomplicated acute cough in primary care: predictors for unjustified prescribing of antibiotics. J Antimicrob Chemother. 2010;65:15215. DOIPubMedGoogle Scholar
  11. Hawker  JI, Smith  S, Smith  GE, Morbey  R, Johnson  AP, Fleming  DM, et al. Trends in antibiotic prescribing in primary care for clinical syndromes subject to national recommendations to reduce antibiotic resistance, UK 1995-2011: analysis of a large database of primary care consultations. J Antimicrob Chemother. 2014;69:342330. DOIPubMedGoogle Scholar
  12. McCullough  AR, Rathbone  J, Parekh  S, Hoffmann  TC, Del Mar  CB. Not in my backyard: a systematic review of clinicians’ knowledge and beliefs about antibiotic resistance. J Antimicrob Chemother. 2015;70:246573. DOIPubMedGoogle Scholar
  13. McKay  R, Mah  A, Law  MR, McGrail  K, Patrick  DM. Systematic review of factors associated with antibiotic prescribing for respiratory tract infections. Antimicrob Agents Chemother. 2016;60:410618. DOIPubMedGoogle Scholar
  14. Welsh  CE, Parkin  TDH, Marshall  JF. Use of large-scale veterinary data for the investigation of antimicrobial prescribing practices in equine medicine. Equine Vet J. 2017;49:42532. DOIPubMedGoogle Scholar
  15. Hughes  LA, Williams  N, Clegg  P, Callaby  R, Nuttall  T, Coyne  K, et al. Cross-sectional survey of antimicrobial prescribing patterns in UK small animal veterinary practice. Prev Vet Med. 2012;104:30916. DOIPubMedGoogle Scholar
  16. De Briyne  N, Atkinson  J, Pokludová  L, Borriello  SP, Price  S. Factors influencing antibiotic prescribing habits and use of sensitivity testing amongst veterinarians in Europe. Vet Rec. 2013;173:475. DOIPubMedGoogle Scholar
  17. Mateus  AL, Brodbelt  DC, Barber  N, Stärk  KD. Qualitative study of factors associated with antimicrobial usage in seven small animal veterinary practices in the UK. Prev Vet Med. 2014;117:6878. DOIPubMedGoogle Scholar
  18. O’Neill  DG, Church  DB, McGreevy  PD, Thomson  PC, Brodbelt  DC. Approaches to canine health surveillance. Canine Genet Epidemiol. 2014;1:2. DOIPubMedGoogle Scholar
  19. Sánchez-Vizcaíno  F, Jones  PH, Menacere  T, Heayns  B, Wardeh  M, Newman  J, et al. Small animal disease surveillance. Vet Rec. 2015;177:5914. DOIPubMedGoogle Scholar
  20. Radford  AD, Noble  PJ, Coyne  KP, Gaskell  RM, Jones  PH, Bryan  JG, et al. Antibacterial prescribing patterns in small animal veterinary practice identified via SAVSNET: the small animal veterinary surveillance network. Vet Rec. 2011;169:310. DOIPubMedGoogle Scholar
  21. Buckland  EL, O’Neill  D, Summers  J, Mateus  A, Church  D, Redmond  L, et al. Characterisation of antimicrobial usage in cats and dogs attending UK primary care companion animal veterinary practices. Vet Rec. 2016;179:489. DOIPubMedGoogle Scholar
  22. Singleton  DA, Sánchez-Vizcaíno  F, Dawson  S, Jones  PH, Noble  PJM, Pinchbeck  GL, et al. Patterns of antimicrobial agent prescription in a sentinel population of canine and feline veterinary practices in the United Kingdom. Vet J. 2017;224:1824. DOIPubMedGoogle Scholar
  23. Burke  S, Black  V, Sánchez-Vizcaíno  F, Radford  A, Hibbert  A, Tasker  S. Use of cefovecin in a UK population of cats attending first-opinion practices as recorded in electronic health records. J Feline Med Surg. 2017;19:68792. DOIPubMedGoogle Scholar
  24. World Health Organization. WHO list of critically important antimicrobials (WHO CIA list) [cited 2001 Jun 19].
  25. German  AJ, Halladay  LJ, Noble  PJ. First-choice therapy for dogs presenting with diarrhoea in clinical practice. Vet Rec. 2010;167:8104. DOIPubMedGoogle Scholar
  26. Jones  PH, Dawson  S, Gaskell  RM, Coyne  KP, Tierney  A, Setzkorn  C, et al. Surveillance of diarrhoea in small animal practice through the Small Animal Veterinary Surveillance Network (SAVSNET). Vet J. 2014;201:4128. DOIPubMedGoogle Scholar
  27. Day  MJ, Horzinek  MC, Schultz  RD, Squires  RA; Vaccination Guidelines Group (VGG) of the World Small Animal Veterinary Association (WSAVA). WSAVA Guidelines for the vaccination of dogs and cats. J Small Anim Pract. 2016;57:E145. DOIPubMedGoogle Scholar
  28. Sánchez-Vizcaíno  F, Noble  PM, Jones  PH, Menacere  T, Buchan  I, Reynolds  S, et al. Demographics of dogs, cats, and rabbits attending veterinary practices in Great Britain as recorded in their electronic health records. BMC Vet Res. 2017;13:218. DOIPubMedGoogle Scholar
  29. vonholdt BM, Pollinger JP, Lohmueller KE, Han E, Parker HG, Quignon P, et al. Genome-wide SNP and haplotype analyses reveal a rich history underlying dog domestication. Nature. 2010;464:898–902.
  30. Aegerter  J, Fouracre  D, Smith  GC. A first estimate of the structure and density of the populations of pet cats and dogs across Great Britain. PLoS One. 2017;12:e0174709. DOIPubMedGoogle Scholar
  31. Lipinski  MJ, Froenicke  L, Baysac  KC, Billings  NC. Leutenegger C, Levy AM, et al. The ascent of cat breeds: genetic evaluations of breeds and worldwide random-bred populations. Genomics. 2008;91:12–1.
  32. World Health Organization. Critically important antimicrobials for human medicine: 5th revision 2016 [cited 2001 Apr 16].
  33. Goddard  A, Leisewitz  AL. Canine parvovirus. Vet Clin North Am Small Anim Pract. 2010;40:104153. DOIPubMedGoogle Scholar
  34. O’Neill  J. Review on antimicrobial resistance: tackling drug-resistant infections globally [cited 2015 Dec 15].
  35. British Small Animal Veterinary Association. BSAVA/SAMSoc guide to responsible use of antibacterials: PROTECT ME [cited 2011 Nov 18].
  36. Hall  JL, Holmes  MA, Baines  SJ. Prevalence and antimicrobial resistance of canine urinary tract pathogens. Vet Rec. 2013;173:549. DOIPubMedGoogle Scholar
  37. Hernandez  J, Bota  D, Farbos  M, Bernardin  F, Ragetly  G, Médaille  C. Risk factors for urinary tract infection with multiple drug-resistant Escherichia coli in cats. J Feline Med Surg. 2014;16:7581. DOIPubMedGoogle Scholar
  38. Huerta  B, Maldonado  A, Ginel  PJ, Tarradas  C, Gómez-Gascón  L, Astorga  RJ, et al. Risk factors associated with the antimicrobial resistance of staphylococci in canine pyoderma. Vet Microbiol. 2011;150:3028. DOIPubMedGoogle Scholar
  39. O’Neill  DG, Church  DB, McGreevy  PD, Thomson  PC, Brodbelt  DC. Prevalence of disorders recorded in cats attending primary-care veterinary practices in England. Vet J. 2014;202:28691. DOIPubMedGoogle Scholar
  40. Chhetri  BK, Berke  O, Pearl  DL, Bienzle  D. Comparison of risk factors for seropositivity to feline immunodeficiency virus and feline leukemia virus among cats: a case-case study. BMC Vet Res. 2015;11:30. DOIPubMedGoogle Scholar
  41. Quinn  JV, Polevoi  SK, Kohn  MA. Traumatic lacerations: what are the risks for infection and has the ‘golden period’ of laceration care disappeared? Emerg Med J. 2014;31:96100. DOIPubMedGoogle Scholar
  42. Jacobs  AA, Chalmers  WS, Pasman  J, van Vugt  F, Cuenen  LH. Feline bordetellosis: challenge and vaccine studies. Vet Rec. 1993;133:2603. DOIPubMedGoogle Scholar
  43. Lappin  MR, Blondeau  J, Boothe  D, Breitschwerdt  EB, Guardabassi  L, Lloyd  DH, et al. Antimicrobial use guidelines for treatment of respiratory tract disease in dogs and cats: Antimicrobial Guidelines Working Group of the International Society for Companion Animal Infectious Diseases. J Vet Intern Med. 2017;31:27994. DOIPubMedGoogle Scholar
  44. Nuttall  T, Uri  M, Halliwell  R. Canine atopic dermatitis - what have we learned? Vet Rec. 2013;172:2017. DOIPubMedGoogle Scholar
  45. Royal College of Veterinary Surgeons. Practice Standards Scheme [cited 2001 Dec 17].
  46. Pleydell  EJ, Souphavanh  K, Hill  KE, French  NP, Prattley  DJ. Descriptive epidemiological study of the use of antimicrobial drugs by companion animal veterinarians in New Zealand. N Z Vet J. 2012;60:11522. DOIPubMedGoogle Scholar
  47. Abel  GA, Barclay  ME, Payne  RA. Adjusted indices of multiple deprivation to enable comparisons within and between constituent countries of the UK including an illustration using mortality rates. BMJ Open. 2016;6:e012750. DOIPubMedGoogle Scholar

Main Article

Page created: June 12, 2020
Page updated: July 17, 2020
Page reviewed: July 17, 2020
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.