Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 30, Number 8—August 2024
Research

SARS-CoV-2 Seropositivity in Urban Population of Wild Fallow Deer, Dublin, Ireland, 2020–2022

Kevin Purves1, Hannah Brown1, Ruth Haverty, Andrew Ryan, Laura L. Griffin, Janet McCormack, Sophie O’Reilly, Patrick W. Mallon, Virginie Gautier, Joseph P. Cassidy, Aurelie Fabre, Michael J. Carr, Gabriel Gonzalez, Simone Ciuti, and Nicola F. FletcherComments to Author 
Author affiliations: University College Dublin, Dublin, Ireland (K. Purves, H. Brown, R. Haverty, A. Ryan, L.L. Griffin, J. McCormack, S. O’Reilly, P.W. Mallon, V. Gautier, J.P. Cassidy, A. Fabre, M.J. Carr, G. Gonzalez, S. Ciuti, N.F. Fletcher); St Vincent's University Hospital, Dublin (P.W. Mallon, A. Fabre); Hokkaido University, Sapporo, Japan (M.J. Carr, G. Gonzalez)

Main Article

Figure 3

Infectivity of SARS-CoV-2 infectious viruses after incubation with SARS-CoV-2–positive serum samples from wild fallow deer, Dublin, Ireland, 2020–2022. Deer serum samples were incubated with infectious SARS-CoV-2 ancestral strain Italy_INMI1 (A) or Omicron BA.1 (B) and then used to infect Vero E6/TMPRSS2 cells. Identification numbers of deer are indicated. Cytopathic effect was calculated as TCID50, as previously described (19). Data are from 2 independent experiments with 8 biologic replicates per experiment. p values were calculated by using 1-way analysis of variance (Appendix 2 Tables 2, 3). Error bars indicate SDs. NS, not significant; TCID50, 50% tissue culture infectious dose.

Figure 3. Infectivity of SARS-CoV-2 infectious viruses after incubation with SARS-CoV-2–positive serum samples from wild fallow deer, Dublin, Ireland, 2020–2022. Deer serum samples were incubated with infectious SARS-CoV-2 ancestral strain Italy_INMI1 (A) or Omicron BA.1 (B) and then used to infect Vero E6/TMPRSS2 cells. Identification numbers of deer are indicated. Cytopathic effect was calculated as TCID50, as previously described (19). Data are from 2 independent experiments with 8 biologic replicates per experiment. p values were calculated by using 1-way analysis of variance (Appendix 2 Tables 2, 3). Error bars indicate SDs. NS, not significant; TCID50, 50% tissue culture infectious dose.

Main Article

References
  1. V’kovski  P, Kratzel  A, Steiner  S, Stalder  H, Thiel  V. Coronavirus biology and replication: implications for SARS-CoV-2. Nat Rev Microbiol. 2021;19:15570. DOIPubMedGoogle Scholar
  2. World Health Organization. WHO COVID-19 dashboard [cited 2023 Jul 21]. https://covid19.who.int
  3. European Centre for Disease Prevention and Control. SARS-CoV-2 in animals: susceptibility of animal species, risk for animal and public health, monitoring, prevention and control. February 28, 2023 [cited 2023 Jul 21]. https://www.ecdc.europa.eu/en/publications-data/sars-cov-2-animals-susceptibility-animal-species-risk-animal-and-public-health
  4. Chandler  JC, Bevins  SN, Ellis  JW, Linder  TJ, Tell  RM, Jenkins-Moore  M, et al. SARS-CoV-2 exposure in wild white-tailed deer (Odocoileus virginianus). Proc Natl Acad Sci U S A. 2021;118:e2114828118. DOIPubMedGoogle Scholar
  5. Hale  VL, Dennis  PM, McBride  DS, Nolting  JM, Madden  C, Huey  D, et al. SARS-CoV-2 infection in free-ranging white-tailed deer. Nature. 2022;602:4816. DOIPubMedGoogle Scholar
  6. Martins  M, Boggiatto  PM, Buckley  A, Cassmann  ED, Falkenberg  S, Caserta  LC, et al. From Deer-to-Deer: SARS-CoV-2 is efficiently transmitted and presents broad tissue tropism and replication sites in white-tailed deer. PLoS Pathog. 2022;18:e1010197. DOIPubMedGoogle Scholar
  7. Palmer  MV, Martins  M, Falkenberg  S, Buckley  A, Caserta  LC, Mitchell  PK, et al. Susceptibility of white-tailed deer (Odocoileus virginianus) to SARS-CoV-2. J Virol. 2021;95:e0008321. DOIPubMedGoogle Scholar
  8. World Organisation for Animal Health. OIE statement on monitoring white-tailed deer for SARS-CoV-2. December 3, 2021 [cited 2023 Jul 21]. https://www.woah.org/en/oie-statement-on-monitoring-white-tailed-deer-for-sars-cov-2
  9. Holding  M, Otter  AD, Dowall  S, Takumi  K, Hicks  B, Coleman  T, et al. Screening of wild deer populations for exposure to SARS-CoV-2 in the United Kingdom, 2020-2021. Transbound Emerg Dis. 2022;69:e32449. DOIPubMedGoogle Scholar
  10. Moreira-Soto  A, Walzer  C, Czirják  , Richter  MH, Marino  SF, Posautz  A, et al. Serological evidence that SARS-CoV-2 has not emerged in deer in Germany or Austria during the COVID-19 pandemic. Microorganisms. 2022;10:748. DOIPubMedGoogle Scholar
  11. Lean  FZX, Cox  R, Madslien  K, Spiro  S, Nymo  IH, Bröjer  C, et al. Tissue distribution of angiotensin-converting enzyme 2 (ACE2) receptor in wild animals with a focus on artiodactyls, mustelids and phocids. One Health. 2023;16:100492. DOIPubMedGoogle Scholar
  12. Zhang  Y, Wei  M, Wu  Y, Wang  J, Hong  Y, Huang  Y, et al. Cross-species tropism and antigenic landscapes of circulating SARS-CoV-2 variants. Cell Rep. 2022;38:110558. DOIPubMedGoogle Scholar
  13. Griffin  LL, Haigh  A, Amin  B, Faull  J, Norman  A, Ciuti  S. Artificial selection in human-wildlife feeding interactions. J Anim Ecol. 2022;91:1892905. DOIPubMedGoogle Scholar
  14. Amin  B, Jennings  DJ, Smith  AF, Quinn  M, Chari  S, Haigh  A, et al. In utero accumulated steroids predict neonate anti-predator response in a wild mammal. Funct Ecol. 2021;35:125567. DOIGoogle Scholar
  15. Griffin  LL, Haigh  A, Conteddu  K, Andaloc  M, McDonnell  P, Ciuti  S. Reducing risky interactions: identifying barriers to the successful management of human–wildlife conflict in an urban parkland. People Nat. 2022;4:91830. DOIGoogle Scholar
  16. Grierson  SS, McGowan  S, Cook  C, Steinbach  F, Choudhury  B. Molecular and in vitro characterisation of hepatitis E virus from UK pigs. Virology. 2019;527:11621. DOIPubMedGoogle Scholar
  17. Purves  K, Haverty  R, O’Neill  T, Folan  D, O’Reilly  S, Baird  AW, et al. A novel antiviral formulation containing caprylic acid inhibits SARS-CoV-2 infection of a human bronchial epithelial cell model. J Gen Virol. 2023;104:001821. DOIPubMedGoogle Scholar
  18. Fletcher  NF, Meredith  LW, Tidswell  EL, Bryden  SR, Gonçalves-Carneiro  D, Chaudhry  Y, et al. A novel antiviral formulation inhibits a range of enveloped viruses. J Gen Virol. 2020;101:1090102. DOIPubMedGoogle Scholar
  19. Reed  LJ, Muench  H. A simple method of estimating fifty percent endpoints. Am J Hyg. 1938;27:4937.
  20. Matsuyama  S, Nao  N, Shirato  K, Kawase  M, Saito  S, Takayama  I, et al. Enhanced isolation of SARS-CoV-2 by TMPRSS2-expressing cells. Proc Natl Acad Sci U S A. 2020;117:70013. DOIPubMedGoogle Scholar
  21. Reynolds  LJ, Gonzalez  G, Sala-Comorera  L, Martin  NA, Byrne  A, Fennema  S, et al. SARS-CoV-2 variant trends in Ireland: Wastewater-based epidemiology and clinical surveillance. Sci Total Environ. 2022;838:155828. DOIPubMedGoogle Scholar
  22. Katoh  K, Rozewicki  J, Yamada  KD. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform. 2019;20:11606. DOIPubMedGoogle Scholar
  23. World Health Organization. Joint statement on the prioritization of monitoring SARS-CoV-2 infection in wildlife and preventing the formation of animal reservoirs. March 7, 2022 [cited 2023 Jul 21]. https://www.who.int/news/item/07-03-2022-joint-statement-on-the-prioritization-of-monitoring-sars-cov-2-infection-in-wildlife-and-preventing-the-formation-of-animal-reservoirs
  24. World Organisation for Animal Health. SARS-COV-2 in animals—situation report 11. March 31, 2022 [cited 2023 Jul 21]. https://www.woah.org/app/uploads/2022/04/sars-cov-2-situation-report-11.pdf
  25. Pickering  B, Lung  O, Maguire  F, Kruczkiewicz  P, Kotwa  JD, Buchanan  T, et al. Divergent SARS-CoV-2 variant emerges in white-tailed deer with deer-to-human transmission. Nat Microbiol. 2022;7:201124. DOIPubMedGoogle Scholar
  26. Pitra  C, Fickel  J, Meijaard  E, Groves  PC. Evolution and phylogeny of old world deer. Mol Phylogenet Evol. 2004;33:88095. DOIPubMedGoogle Scholar
  27. Griffin  LL, Nolan  G, Haigh  A, Condon  H, O’Hagan  H, McDonnell  P, et al. How can we tackle interruptions to human–wildlife feeding management? Adding media campaigns to the wildlife manager’s toolbox. People Nat. 2023;5:1299315. DOIGoogle Scholar
  28. Embregts  CWE, Verstrepen  B, Langermans  JAM, Böszörményi  KP, Sikkema  RS, de Vries  RD, et al. Evaluation of a multi-species SARS-CoV-2 surrogate virus neutralization test. One Health. 2021;13:100313. DOIPubMedGoogle Scholar
  29. Tan  CW, Chia  WN, Zhu  F, Young  BE, Chantasrisawad  N, Hwa  SH, et al. SARS-CoV-2 Omicron variant emerged under immune selection. Nat Microbiol. 2022;7:175661. DOIPubMedGoogle Scholar
  30. Dastjerdi  A, Floyd  T, Swinson  V, Davies  H, Barber  A, Wight  A. Parainfluenza and corona viruses in a fallow deer (Dama dama) with fatal respiratory disease. Front Vet Sci. 2022;9:1059681. DOIPubMedGoogle Scholar
  31. Graham  DA, Gallagher  C, Carden  RF, Lozano  JM, Moriarty  J, O’Neill  R. A survey of free-ranging deer in Ireland for serological evidence of exposure to bovine viral diarrhoea virus, bovine herpes virus-1, bluetongue virus and Schmallenberg virus. Ir Vet J. 2017;70:13. DOIPubMedGoogle Scholar
  32. Biro  PA, Dingemanse  NJ. Sampling bias resulting from animal personality. Trends Ecol Evol. 2009;24:667. DOIPubMedGoogle Scholar
  33. Bagato  O, Balkema-Buschmann  A, Todt  D, Weber  S, Gömer  A, Qu  B, et al. Spatiotemporal analysis of SARS-CoV-2 infection reveals an expansive wave of monocyte-derived macrophages associated with vascular damage and virus clearance in hamster lungs. Microbiol Spectr. 2024;12:e0246923. DOIPubMedGoogle Scholar
  34. Lean  FZX, Lamers  MM, Smith  SP, Shipley  R, Schipper  D, Temperton  N, et al. Development of immunohistochemistry and in situ hybridisation for the detection of SARS-CoV and SARS-CoV-2 in formalin-fixed paraffin-embedded specimens. Sci Rep. 2020;10:21894. DOIPubMedGoogle Scholar
  35. Hamer  SA, Nunez  C, Roundy  CM, Tang  W, Thomas  L, Richison  J, et al. Persistence of SARS-CoV-2 neutralizing antibodies longer than 13 months in naturally infected, captive white-tailed deer (Odocoileus virginianus), Texas. Emerg Microbes Infect. 2022;11:21125. DOIPubMedGoogle Scholar
  36. Lopes  LR. Cervids ACE2 residues that bind the spike protein can provide susceptibility to SARS-CoV-2. EcoHealth. 2023;20:917. DOIPubMedGoogle Scholar

Main Article

1These authors contributed equally to this article.

Page created: June 03, 2024
Page updated: July 20, 2024
Page reviewed: July 20, 2024
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external