Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 30, Number 9—September 2024
Research

Loop-Mediated Isothermal Amplification Assay to Detect Invasive Malaria Vector Anopheles stephensi Mosquitoes

Cristina Rafferty, Gloria Raise, JeNyiah Scaife, Bernard Abongo, Seline Omondi, Sylvia Milanoi, Margaret Muchoki, Brenda Onyango, Eric Ochomo, and Sarah ZohdyComments to Author 
Author affiliations: US President’s Malaria Initiative, Centers for Disease Control and Prevention, Atlanta, Georgia, USA (C. Rafferty, S. Zohdy); Centers for Disease Control and Prevention, Atlanta (C. Rafferty, G. Raise, J. Scaife, S. Zohdy); Kenya Medical Research Institute (KEMRI), Kisumu, Kenya (B. Abongo, S. Omondi, S. Milanoi, M. Muchoki, B. Onyango, E. Ochomo)

Main Article

Figure 4

Validation of colorimetric loop-mediated isothermal amplification assay to detect invasive malaria vector Anopheles stephensi mosquitoes. A) Results using new assay. B) Results using existing An. stephensi PCR (13); yellow boxes indicate An. stephensi products. Conventional PCR resulted in difficult-to-interpret gel bands for An. longipalpis C, Aedes aegypti, and An. coustani samples, similar to An. stephensi samples, and inconsistently produced double bands (positive detection) on sequence-confirmed An. stephensi samples from Kenya. Asterisks (*) in key indicate samples from insectary-reared mosquitoes. Samples 12–23 came from sequence-confirmed field-collected specimens. Sample 25 contained a pool of assorted mosquito DNA species, in which An. stephensi was represented 1:10. For both assays, 1 µL extracted DNA was used. NDC, no DNA template control; UCI, An. stephensi laboratory colony (BEI Resources, https://www.beiresources.org).

Figure 4. Validation of colorimetric loop-mediated isothermal amplification assay to detect invasive malaria vector Anopheles stephensi mosquitoes. A) Results using new assay. B) Results using existing An. stephensi PCR (13); yellow boxes indicate An. stephensi products. Conventional PCR resulted in difficult-to-interpret gel bands for An. longipalpis C, Aedes aegypti, and An. coustani samples, similar to An. stephensi samples, and inconsistently produced double bands (positive detection) on sequence-confirmed An. stephensi samples from Kenya. Asterisks (*) in key indicate samples from insectary-reared mosquitoes. Samples 12–23 came from sequence-confirmed field-collected specimens. Sample 25 contained a pool of assorted mosquito DNA species, in which An. stephensi was represented 1:10. For both assays, 1 µL extracted DNA was used. NDC, no DNA template control; UCI, An. stephensi laboratory colony (BEI Resources, https://www.beiresources.org).

Main Article

References
  1. Faulde  MK, Rueda  LM, Khaireh  BA. First record of the Asian malaria vector Anopheles stephensi and its possible role in the resurgence of malaria in Djibouti, Horn of Africa. Acta Trop. 2014;139:3943. DOIPubMedGoogle Scholar
  2. World Health Organization. WHO initiative to stop the spread of Anopheles stephensi in Africa. 2023 update [cited 2023 Aug 15]. https://www.who.int/publications/i/item/WHO-UCN-GMP-2022.06
  3. World Health Organization. Vector alert: Anopheles stephensi invasion and spread: Horn of Africa, the Republic of the Sudan and surrounding geographical areas, and Sri Lanka: information note. 2019 [cited 2019 Sep 1]. https://iris.who.int/handle/10665/326595
  4. Emiru  T, Getachew  D, Murphy  M, Sedda  L, Ejigu  LA, Bulto  MG, et al. Evidence for a role of Anopheles stephensi in the spread of drug- and diagnosis-resistant malaria in Africa. Nat Med. 2023;29:320311. DOIPubMedGoogle Scholar
  5. Faulde  MK, Pages  F, Uedelhoven  W. Bioactivity and laundering resistance of five commercially available, factory-treated permethrin-impregnated fabrics for the prevention of mosquito-borne diseases: the need for a standardized testing and licensing procedure. Parasitol Res. 2016;115:157382. DOIPubMedGoogle Scholar
  6. Balkew  M, Mumba  P, Yohannes  G, Abiy  E, Getachew  D, Yared  S, et al. An update on the distribution, bionomics, and insecticide susceptibility of Anopheles stephensi in Ethiopia, 2018-2020. Malar J. 2021;20:263. DOIPubMedGoogle Scholar
  7. Sinka  ME, Pironon  S, Massey  NC, Longbottom  J, Hemingway  J, Moyes  CL, et al. A new malaria vector in Africa: Predicting the expansion range of Anopheles stephensi and identifying the urban populations at risk. Proc Natl Acad Sci U S A. 2020;117:249008. DOIPubMedGoogle Scholar
  8. Hamlet  A, Dengela  D, Tongren  JE, Tadesse  FG, Bousema  T, Sinka  M, et al. The potential impact of Anopheles stephensi establishment on the transmission of Plasmodium falciparum in Ethiopia and prospective control measures. BMC Med. 2022;20:135. DOIPubMedGoogle Scholar
  9. World Health Organization. Vector alert: Anopheles stephensi invasion and spread in Africa and Sri Lanka. 2022 [cited 2022 Oct 15]. https://iris.who.int/handle/10665/365710
  10. US President’s Malaria Initiative. Responding to Anopheles stephensi [cited 2023 Feb 22]. https://www.pmi.gov/what-we-do/entomological-monitoring/anstephensi
  11. Coetzee  M. Key to the females of Afrotropical Anopheles mosquitoes (Diptera: Culicidae). Malar J. 2020;19:70. DOIPubMedGoogle Scholar
  12. Ahmed  A, Irish  SR, Zohdy  S, Yoshimizu  M, Tadesse  FG. Strategies for conducting Anopheles stephensi surveys in non-endemic areas. Acta Trop. 2022;236:106671. DOIPubMedGoogle Scholar
  13. Singh  OP, Kaur  T, Sharma  G, Kona  MP, Mishra  S, Kapoor  N, et al. Molecular tools for early detection of invasive malaria vector Anopheles stephensi mosquitoes. Emerg Infect Dis. 2023;29:3644. DOIPubMedGoogle Scholar
  14. Garg  N, Ahmad  FJ, Kar  S. Recent advances in loop-mediated isothermal amplification (LAMP) for rapid and efficient detection of pathogens. Curr Res Microb Sci. 2022;3:100120. DOIPubMedGoogle Scholar
  15. Hatano  B, Maki  T, Obara  T, Fukumoto  H, Hagisawa  K, Matsushita  Y, et al. LAMP using a disposable pocket warmer for anthrax detection, a highly mobile and reliable method for anti-bioterrorism. Jpn J Infect Dis. 2010;63:3640. DOIPubMedGoogle Scholar
  16. Dao Thi  VL, Herbst  K, Boerner  K, Meurer  M, Kremer  LP, Kirrmaier  D, et al. A colorimetric RT-LAMP assay and LAMP-sequencing for detecting SARS-CoV-2 RNA in clinical samples. Sci Transl Med. 2020;12:eabc7075. DOIPubMedGoogle Scholar
  17. New England Biolabs. NEB LAMP primer design tool version 1.4.1 [cited 2023 May 1]. https://www.neb.com/en-us/neb-primer-design-tools/neb-primer-design-tools
  18. Mishra  S, Sharma  G, Das  MK, Pande  V, Singh  OP. Intragenomic sequence variations in the second internal transcribed spacer (ITS2) ribosomal DNA of the malaria vector Anopheles stephensi. PLoS One. 2021;16:e0253173. DOIPubMedGoogle Scholar
  19. Notomi  T, Okayama  H, Masubuchi  H, Yonekawa  T, Watanabe  K, Amino  N, et al. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 2000;28:E63. DOIPubMedGoogle Scholar
  20. Nagamine  K, Hase  T, Notomi  T. Accelerated reaction by loop-mediated isothermal amplification using loop primers. Mol Cell Probes. 2002;16:2239. DOIPubMedGoogle Scholar
  21. Bonizzoni  M, Afrane  Y, Yan  G. Loop-mediated isothermal amplification (LAMP) for rapid identification of Anopheles gambiae and Anopheles arabiensis mosquitoes. Am J Trop Med Hyg. 2009;81:10304. DOIPubMedGoogle Scholar
  22. BEI Resources Malaria Research and Reference Reagent Resource Center (MR4) [cited 2023 Jun 15]. https://www.beiresources.org/About/MR4Home.aspx
  23. Ochomo  EO, Milanoi  S, Abong’o  B, Onyango  B, Muchoki  M, Omoke  D, et al. Detection of Anopheles stephensi mosquitoes by molecular surveillance, Kenya. Emerg Infect Dis. 2023;29:2498508. DOIPubMedGoogle Scholar
  24. Folmer  O, Black  M, Hoeh  W, Lutz  R, Vrijenhoek  R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol. 1994;3:2949.PubMedGoogle Scholar
  25. Gillies  MT, Coetzee  M. A supplement to the Anophelinae of Africa South of the Sahara. Publ South African Institute for Medical Research Journal. 1987;55:1143.
  26. World Health Organization. Malaria threats map [cited 2023 Aug 7]. https://apps.who.int/malaria/maps/threats
  27. Sherrard-Smith  E, Skarp  JE, Beale  AD, Fornadel  C, Norris  LC, Moore  SJ, et al. Mosquito feeding behavior and how it influences residual malaria transmission across Africa. Proc Natl Acad Sci U S A. 2019;116:1508695. DOIPubMedGoogle Scholar
  28. Scott  JA, Brogdon  WG, Collins  FH. Identification of single specimens of the Anopheles gambiae complex by the polymerase chain reaction. Am J Trop Med Hyg. 1993;49:5209. DOIPubMedGoogle Scholar
  29. Carter  TE, Yared  S, Gebresilassie  A, Bonnell  V, Damodaran  L, Lopez  K, et al. First detection of Anopheles stephensi Liston, 1901 (Diptera: culicidae) in Ethiopia using molecular and morphological approaches. Acta Trop. 2018;188:1806. DOIPubMedGoogle Scholar
  30. Chitnis  N, Smith  T, Steketee  R. A mathematical model for the dynamics of malaria in mosquitoes feeding on a heterogeneous host population. J Biol Dyn. 2008;2:25985. DOIPubMedGoogle Scholar
  31. Yakob  L, Yan  G. Modeling the effects of integrating larval habitat source reduction and insecticide treated nets for malaria control. PLoS One. 2009;4:e6921. DOIPubMedGoogle Scholar
  32. Dye  C. The analysis of parasite transmission by bloodsucking insects. Annu Rev Entomol. 1992;37:119. DOIPubMedGoogle Scholar

Main Article

Page created: July 10, 2024
Page updated: August 20, 2024
Page reviewed: August 20, 2024
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external