Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link

Disclaimer: Early release articles are not considered as final versions. Any changes will be reflected in the online version in the month the article is officially released.

Volume 31, Number 1—January 2025
Research

Cefiderocol Resistance Conferred by Plasmid-Located Ferric Citrate Transport System in Klebsiella pneumoniae CarbapenemaseProducing K. pneumoniae

Riccardo Polani, Alice De Francesco, Dario Tomolillo, Irene Artuso, Michele Equestre, Rita Trirocco, Gabriele Arcari, Guido Antonelli, Laura Villa, Gianni Prosseda, Paolo Visca, and Alessandra CarattoliComments to Author 
Author affiliation: Sapienza University of Rome, Rome, Italy (R. Polani, A. De Francesco, D. Tomolillo, R. Trirocco, G. Arcari, G. Antonelli, G. Prosseda, A. Carattoli); University of Pavia, Pavia, ltaly (D. Tomolillo); Istituto Superiore di Sanità, Rome (I. Artuso, M. Equestre, L. Villa); University of Insubria, Varese, Italy (G. Arcari); Sapienza University Hospital “Policlinico Umberto I,” Rome (G. Antonelli); Roma Tre University, Rome (P. Visca)

Main Article

Figure 3

Expression analysis of siderophore receptor genes in the presence and absence of plasmidic fec gene cluster and ferric citrate inducer in study of cefiderocol resistance conferred by plasmid-located ferric citrate transport system in Klebsiella pneumoniae carbapenemase–producing K. pneumoniae. A) Transcription of the fecA genes in the DH5-α strain carrying R69c or R69c-FEC, determined by using primer pairs able to discern the chromosomal fecA allele from the K. pneumoniae fecA gene in the fecABCDE operon or a primer pair recognizing both chromosomal and plasmidic fecA alleles (Appendix 1). The relative quantitative analysis of the transcripts was based on the 2−ΔΔCT method (33). In both bar graphs, the relative values were calculated with respect to the transcript level observed in the R69c carrying strains and set to 1. B) Transcription of the siderophore receptor genes fiu, cirA, fepA, and fhuA in the R69c-FEC and R69c strains grown in the absence of ferric citrate or in the presence of 0.5 μM or 5.0 μM ferric citrate, relative to the R69c strain grown without ferric citrate, which is set to 1. The relative quantitative analysis of the transcripts was based on the 2−ΔΔCT method (33). Error bars represent SDs. Statistical significance was determined by using a paired 2-tailed Student t-test comparing the dataset obtained from the 2 strains grown under the same conditions. FEC, ferric citrate transport system.

Figure 3. Expression analysis of siderophore receptor genes in the presence and absence of plasmidic fec gene cluster and ferric citrate inducer in study of cefiderocol resistance conferred by plasmid-located ferric citrate transport system in Klebsiella pneumoniae carbapenemase–producing K. pneumoniae. A) Transcription of the fecA genes in the DH5-α strain carrying R69c or R69c-FEC, determined by using primer pairs able to discern the chromosomal fecA allele from the K. pneumoniae fecA gene in the fecABCDE operon or a primer pair recognizing both chromosomal and plasmidic fecA alleles (Appendix 1). The relative quantitative analysis of the transcripts was based on the 2−ΔΔCT method (33). In both bar graphs, the relative values were calculated with respect to the transcript level observed in the R69c carrying strains and set to 1. B) Transcription of the siderophore receptor genes fiu, cirA, fepA, and fhuA in the R69c-FEC and R69c strains grown in the absence of ferric citrate or in the presence of 0.5 μM or 5.0 μM ferric citrate, relative to the R69c strain grown without ferric citrate, which is set to 1. The relative quantitative analysis of the transcripts was based on the 2−ΔΔCT method (33). Error bars represent SDs. Statistical significance was determined by using a paired 2-tailed Student t-test comparing the dataset obtained from the 2 strains grown under the same conditions. FEC, ferric citrate transport system.

Main Article

References
  1. Miller  WR, Arias  CA. ESKAPE pathogens: antimicrobial resistance, epidemiology, clinical impact and therapeutics. Nat Rev Microbiol. 2024;22:598616. DOIPubMedGoogle Scholar
  2. World Health Organization. WHO bacterial priority pathogens list, 2024: bacterial pathogens of public health importance to guide research, development and strategies to prevent and control antimicrobial resistance [cited 2024 Nov 27]. https://www.who.int/publications/i/item/9789240093461
  3. Tamma  PD, Han  JH, Rock  C, Harris  AD, Lautenbach  E, Hsu  AJ, et al.; Antibacterial Resistance Leadership Group. Carbapenem therapy is associated with improved survival compared with piperacillin-tazobactam for patients with extended-spectrum β-lactamase bacteremia. Clin Infect Dis. 2015;60:131925. DOIPubMedGoogle Scholar
  4. Pitout  JD, Nordmann  P, Poirel  L. Carbapenemase-producing Klebsiella pneumoniae, a key pathogen set for global nosocomial dominance. Antimicrob Agents Chemother. 2015;59:587384. DOIPubMedGoogle Scholar
  5. Yigit  H, Queenan  AM, Anderson  GJ, Domenech-Sanchez  A, Biddle  JW, Steward  CD, et al. Novel carbapenem-hydrolyzing beta-lactamase, KPC-1, from a carbapenem-resistant strain of Klebsiella pneumoniae. Antimicrob Agents Chemother. 2001;45:115161. DOIPubMedGoogle Scholar
  6. Chen  L, Mathema  B, Chavda  KD, DeLeo  FR, Bonomo  RA, Kreiswirth  BN. Carbapenemase-producing Klebsiella pneumoniae: molecular and genetic decoding. Trends Microbiol. 2014;22:68696. DOIPubMedGoogle Scholar
  7. Leavitt  A, Chmelnitsky  I, Ofek  I, Carmeli  Y, Navon-Venezia  S. Plasmid pKpQIL encoding KPC-3 and TEM-1 confers carbapenem resistance in an extremely drug-resistant epidemic Klebsiella pneumoniae strain. J Antimicrob Chemother. 2010;65:2438. DOIPubMedGoogle Scholar
  8. Shirley  M. Ceftazidime-avibactam: a review in the treatment of serious gram-negative bacterial infections. Drugs. 2018;78:67592. DOIPubMedGoogle Scholar
  9. Yahav  D, Giske  CG, Grāmatniece  A, Abodakpi  H, Tam  VH, Leibovici  L. New β-lactam-β-lactamase inhibitor combinations. Clin Microbiol Rev. 2020;34:e0011520. DOIPubMedGoogle Scholar
  10. Shields  RK, Chen  L, Cheng  S, Chavda  KD, Press  EG, Snyder  A, et al. Emergence of ceftazidime-avibactam resistance due to plasmid-borne blaKPC-3 mutations during treatment of carbapenem-resistant Klebsiella pneumoniae infections. Antimicrob Agents Chemother. 2017;61:e0209716.PubMedGoogle Scholar
  11. Humphries  RM, Yang  S, Hemarajata  P, Ward  KW, Hindler  JA, Miller  SA, et al. First report of ceftazidime-avibactam resistance in a KPC-3-expressing Klebsiella pneumoniae isolate. Antimicrob Agents Chemother. 2015;59:66057. DOIPubMedGoogle Scholar
  12. Hobson  CA, Pierrat  G, Tenaillon  O, Bonacorsi  S, Bercot  B, Jaouen  E, et al. Klebsiella pneumoniae carbapenemase variants resistant to ceftazidime-avibactam: an evolutionary overview. Antimicrob Agents Chemother. 2022;66:e0044722. DOIPubMedGoogle Scholar
  13. Taracila  MA, Bethel  CR, Hujer  AM, Papp-Wallace  KM, Barnes  MD, Rutter  JD, et al. Different conformations revealed by NMR underlie resistance to ceftazidime/avibactam and susceptibility to meropenem and imipenem among D179Y variants of KPC β-lactamase. Antimicrob Agents Chemother. 2022;66:e0212421. DOIPubMedGoogle Scholar
  14. Sato  T, Yamawaki  K. Cefiderocol: discovery, chemistry, and in vivo profiles of a novel siderophore cephalosporin. Clin Infect Dis. 2019;69(Suppl 7):S53843. DOIPubMedGoogle Scholar
  15. Wu  JY, Srinivas  P, Pogue  JM. Cefiderocol: a novel agent for the management of multidrug-resistant gram-negative organisms. Infect Dis Ther. 2020;9:1740. DOIPubMedGoogle Scholar
  16. Bolger  AM, Lohse  M, Usadel  B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:211420. DOIPubMedGoogle Scholar
  17. Bankevich  A, Nurk  S, Antipov  D, Gurevich  AA, Dvorkin  M, Kulikov  AS, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19:45577. DOIPubMedGoogle Scholar
  18. Freire  B, Ladra  S, Parama  JR. Memory-efficient assembly using Flye. IEEE/ACM Trans Comput Biol Bioinform. 2022;19:356477. DOIPubMedGoogle Scholar
  19. Wick  RR, Judd  LM, Gorrie  CL, Holt  KE. Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. PLOS Comput Biol. 2017;13:e1005595. DOIPubMedGoogle Scholar
  20. Bouras  G, Houtak  G, Wick  RR, Mallawaarachchi  V, Roach  MJ, Papudeshi  B, et al. Hybracter: enabling scalable, automated, complete and accurate bacterial genome assemblies. Microb Genom. 2024;10:001244. DOIPubMedGoogle Scholar
  21. Seemann  T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30:20689. DOIPubMedGoogle Scholar
  22. von Gabain  A, Belasco  JG, Schottel  JL, Chang  AC, Cohen  SN. Decay of mRNA in Escherichia coli: investigation of the fate of specific segments of transcripts. Proc Natl Acad Sci U S A. 1983;80:6537. DOIPubMedGoogle Scholar
  23. Trirocco  R, Pasqua  M, Tramonti  A, Grossi  M, Colonna  B, Paiardini  A, et al. Fatty acids abolish Shigella virulence by inhibiting its master regulator, VirF. Microbiol Spectr. 2023;11:e0077823. DOIPubMedGoogle Scholar
  24. Page  AJ, Cummins  CA, Hunt  M, Wong  VK, Reuter  S, Holden  MT, et al. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics. 2015;31:36913. DOIPubMedGoogle Scholar
  25. Katoh  K, Misawa  K, Kuma  K, Miyata  T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002;30:305966. DOIPubMedGoogle Scholar
  26. Minh  BQ, Schmidt  HA, Chernomor  O, Schrempf  D, Woodhams  MD, von Haeseler  A, et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol. 2020;37:15304. DOIPubMedGoogle Scholar
  27. Carattoli  A, Arcari  G, Bibbolino  G, Sacco  F, Tomolillo  D, Di Lella  FM, et al. Evolutionary trajectories toward ceftazidime-avibactam resistance in Klebsiella pneumoniae clinical isolates. Antimicrob Agents Chemother. 2021;65:e0057421. DOIPubMedGoogle Scholar
  28. Arcari  G, Cecilia  F, Oliva  A, Polani  R, Raponi  G, Sacco  F, et al. Genotypic evolution of Klebsiella pneumoniae sequence type 512 during ceftazidime/avibactam, meropenem/vaborbactam, and cefiderocol treatment, Italy. Emerg Infect Dis. 2023;29:226674. DOIPubMedGoogle Scholar
  29. Braun  V, Hartmann  MD, Hantke  K. Transcription regulation of iron carrier transport genes by ECF sigma factors through signaling from the cell surface into the cytoplasm. FEMS Microbiol Rev. 2022;46:fuac010. DOIPubMedGoogle Scholar
  30. Villa  L, Feudi  C, Fortini  D, Brisse  S, Passet  V, Bonura  C, et al. Diversity, virulence, and antimicrobial resistance of the KPC-producing Klebsiella pneumoniae ST307 clone. Microb Genom. 2017;3:e000110. DOIPubMedGoogle Scholar
  31. Simner  PJ, Bergman  Y, Conzemius  R, Jacobs  E, Tekle  T, Beisken  S, et al. An NDM-producing Escherichia coli clinical isolate exhibiting resistance to cefiderocol and the combination of ceftazidime-avibactam and aztreonam: another step toward pan-β-lactam resistance. Open Forum Infect Dis. 2023;10:ofad276. DOIPubMedGoogle Scholar
  32. McElheny  CL, Fowler  EL, Iovleva  A, Shields  RK, Doi  Y. In vitro evolution of cefiderocol resistance in an NDM-producing Klebsiella pneumoniae due to functional loss of CirA. Microbiol Spectr. 2021;9:e0177921. DOIPubMedGoogle Scholar
  33. Lan  P, Lu  Y, Jiang  Y, Wu  X, Yu  Y, Zhou  J. Catecholate siderophore receptor CirA impacts cefiderocol susceptibility in Klebsiella pneumoniae. Int J Antimicrob Agents. 2022;60:106646. DOIPubMedGoogle Scholar
  34. Poirel  L, Sadek  M, Kusaksizoglu  A, Nordmann  P. Co-resistance to ceftazidime-avibactam and cefiderocol in clinical isolates producing KPC variants. Eur J Clin Microbiol Infect Dis. 2022;41:67780. DOIPubMedGoogle Scholar
  35. Coppi  M, Di Pilato  V, Monaco  F, Giani  T, Conaldi  PG, Rossolini  GM. Ceftazidime-avibactam resistance associated with increased blaKPC-3 gene copy number mediated by pKpQIL plasmid derivatives in sequence type 258 Klebsiella pneumoniae. Antimicrob Agents Chemother. 2020;64:e018169. DOIPubMedGoogle Scholar
  36. Hobson  CA, Cointe  A, Jacquier  H, Choudhury  A, Magnan  M, Courroux  C, et al. Cross-resistance to cefiderocol and ceftazidime-avibactam in KPC β-lactamase mutants and the inoculum effect. Clin Microbiol Infect. 2021;27:1172.e710. DOIPubMedGoogle Scholar
  37. Pressler  U, Staudenmaier  H, Zimmermann  L, Braun  V. Genetics of the iron dicitrate transport system of Escherichia coli. J Bacteriol. 1988;170:271624. DOIPubMedGoogle Scholar
  38. Staudenmaier  H, Van Hove  B, Yaraghi  Z, Braun  V. Nucleotide sequences of the fecBCDE genes and locations of the proteins suggest a periplasmic-binding-protein-dependent transport mechanism for iron(III) dicitrate in Escherichia coli. J Bacteriol. 1989;171:262633. DOIPubMedGoogle Scholar
  39. Baichoo  N, Helmann  JD. Recognition of DNA by Fur: a reinterpretation of the Fur box consensus sequence. J Bacteriol. 2002;184:582632. DOIPubMedGoogle Scholar
  40. Kocer  K, Boutin  S, Heeg  K, Nurjadi  D. The acquisition of transferable extrachromosomal fec operon is associated with a cefiderocol MIC increase in Enterobacterales. J Antimicrob Chemother. 2022;77:348795. DOIPubMedGoogle Scholar
  41. Ganz  T, Nemeth  E. Iron homeostasis in host defence and inflammation. Nat Rev Immunol. 2015;15:50010. DOIPubMedGoogle Scholar
  42. Page  MGP. The role of iron and siderophores in infection, and the development of siderophore antibiotics. Clin Infect Dis. 2019;69(Suppl 7):S52937. DOIPubMedGoogle Scholar
  43. Costello  LC, Franklin  RB. Plasma citrate homeostasis: how it is regulated; and its physiological and clinical implications. an important, but neglected, relationship in medicine. HSOA J Hum Endocrinol. 2016;1:005.
  44. Frick-Cheng  AE, Sintsova  A, Smith  SN, Pirani  A, Snitkin  ES, Mobley  HLT. Ferric citrate uptake is a virulence factor in uropathogenic Escherichia coli. MBio. 2022;13:e0103522. DOIPubMedGoogle Scholar
  45. Huang  WC, Wong  MY, Wang  SH, Hashimoto  M, Lin  MH, Lee  MF, et al. The ferric citrate uptake system encoded in a novel bla CTX-M-3- and bla TEM-1-harboring conjugative plasmid contributes to the virulence of Escherichia coli. Front Microbiol. 2021;12:667782. DOIPubMedGoogle Scholar
  46. Blum  SE, Goldstone  RJ, Connolly  JPR, Répérant-Ferter  M, Germon  P, Inglis  NF, et al. Postgenomics characterization of an essential genetic determinant of mammary pathogenic Escherichia coli. MBio. 2018;9:e0042318. DOIPubMedGoogle Scholar
  47. Livak  KJ, Schmittgen  TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Δ Δ C(T)) Method. Methods. 2001;25:4028. DOIPubMedGoogle Scholar
  48. Kalyaanamoorthy  S, Minh  BQ, Wong  TKF, von Haeseler  A, Jermiin  LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods. 2017;14:5879. DOIPubMedGoogle Scholar

Main Article

Page created: December 02, 2024
Page updated: December 18, 2024
Page reviewed: December 18, 2024
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external