Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link

Disclaimer: Early release articles are not considered as final versions. Any changes will be reflected in the online version in the month the article is officially released.

Volume 31, Number 3—March 2025
Research

Model-Based Analysis of Impact, Costs, and Cost-Effectiveness of Tuberculosis Outbreak Investigations, United States

Sourya ShresthaComments to Author , Lucia Cilloni, Garrett R. Beeler Asay, J. Steve Kammerer, Kala Raz, Tambi Shaw, Martin Cilnis, Jonathan Wortham, Suzanne M. Marks, and David Dowdy
Author affiliation: Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA (S. Shrestha, L. Cilloni, D. Dowdy); Centers for Disease Control and Prevention, Atlanta, Georgia, USA (G.R.B. Asay, J.S. Kammerer, K. Raz, J. Wortham, S.M. Marks); California Department of Public Health, Richmond, California, USA (T. Shaw, M. Cilnis)

Main Article

Table 2

Descriptions, estimates and uncertainty ranges for parameters describing TB natural history, costs of TB outbreak investigations, and cost-effectiveness evaluation in study of impact, costs, and cost-effectiveness of TB outbreak investigations, United States*

Model parameters Point estimate Lower value Upper value Sources and additional notes
Characterization of TB natural history and the impact of intervention
% Contacts who will develop TB within 5 years after infection 6.6% 3% 15% Based on estimates of reactivation of LTBI among recent exposure (14) and among close contacts of TB patients (15). Lower value of 3% reflects uncertainty in the recency of the infection among contacts.
Efficacy of completed LTBI treatment 93% 70% 95% Estimates from 9H trial and noninferiority of 3HP compared with 9H (16,17).
R0 of cases detected during outbreak investigation 0.29 0.15 1.5 R0 of 0.29 from Shrestha et al. (12). Upper value of 1.5 for R0reflects outbreak settings with higher transmission.
% Reduction in infectious period through early detection
50%
25%
75%
Modeled as reduction in R0 based on higher case detection and notification in contact investigations (18), resulting in reduction in delays in TB diagnosis, a contributor to outbreaks (2).
Unit cost estimates, 2022 US$
Cost of PCR-based genotyping, per isolate $35 $25 $50 CDC (culture, typing, and identification by nucleic acid probe, amplified probe technique) (19)
Cost of outbreak investigation, cost per contact during outbreak investigation† $151 $86 $225 Unpublished data from 2 outbreaks in California (average cost of $106 per contact (2014 US$) (T. Shaw, unpub. data) (Appendix); unpublished CDC data reports mean cost of $175.90 ($78.00–$293.50) (2022 US$) (20).
Cost of LTBI testing per contact $71 $60 $80 Includes costs of IGRA LTBI testing, and costs of chest radiograph and TB test to rule out TB disease among those testing positive for IGRA (19,21,22).
Cost of LTBI treatment per infected contact $515 $300 $700 Includes costs of 3HP (23), laboratory testing, and toxicity both requiring and not requiring hospitalization (24). Assumes toxicity among 3.2% (20) of persons receiving LTBI treatment (25), and 0.015% requiring hospitalization (26).
Cost of TB treatment per contact with disease
$23,543
$15,000
$30,000
Direct TB treatment costs for non–MDR TB (27)
QALY estimates
Annual discount rate 3% Assumption
QALYs gained per TB case averted 1.16 0.74 1.39 Assumes 4.7% average mortality among people with TB, 36.3 years of average life expectancy at TB diagnosis, and health utility of 0.76 during TB treatment (28)‡;
QALYs lost per LTBI treatment 0.002 0.0015 0.0025 Jo et al. (20

*3HP, 3 months of isoniazid and rifapentine; 9H, 9 months of isoniazid; ARPE, Aggregate Reports for Program Evaluation; CDC, Centers for Disease Control and Prevention; IGRA, interferon-gamma release assay; LTBI, latent TB infection; MDR, multidrug resistant; QALY, quality-adjusted life-years; TB, tuberculosis. †Excludes costs associated with TB and LTBI treatment. ‡See Appendix for details on TB mortality rates; other data were incorporated to construct the range. §QALY estimate assumes toxicity among 3.2% of persons receiving LTBI treatment (25), and 0.015% requiring hospitalization (26).

Main Article

References
  1. Onorato  IM. Tuberculosis outbreaks in the United States. [The Comstock Lecture]. Int J Tuberc Lung Dis. 2000;4(Suppl 2):S1216.PubMedGoogle Scholar
  2. Mindra  G, Wortham  JM, Haddad  MB, Powell  KM. Tuberculosis Outbreaks in the United States, 2009-2015. Public Health Rep. 2017;132:15763. DOIPubMedGoogle Scholar
  3. Mitruka  K, Oeltmann  JE, Ijaz  K, Haddad  MB. Tuberculosis outbreak investigations in the United States, 2002-2008. Emerg Infect Dis. 2011;17:42531. DOIPubMedGoogle Scholar
  4. Armstrong  LR, Winston  CA, Stewart  B, Tsang  CA, Langer  AJ, Navin  TR. Changes in tuberculosis epidemiology, United States, 1993-2017. Int J Tuberc Lung Dis. 2019;23:797804. DOIPubMedGoogle Scholar
  5. Centers for Disease Control and Prevention. Reported tuberculosis in the United States, 2021 [cited 2023 May 22]. https://www.cdc.gov/tb/statistics/reports/2021
  6. Wortham  JM, Li  R, Althomsons  SP, Kammerer  S, Haddad  MB, Powell  KM. Tuberculosis genotype clusters and transmission in the U.S., 2009–2018. Am J Prev Med. 2021;61:2018. DOIPubMedGoogle Scholar
  7. Raz  KM, Talarico  S, Althomsons  SP, Kammerer  JS, Cowan  LS, Haddad  MB, et al. Molecular surveillance for large outbreaks of tuberculosis in the United States, 2014-2018. Tuberculosis (Edinb). 2022;136:102232. DOIPubMedGoogle Scholar
  8. Bamrah  S, Yelk Woodruff  RS, Powell  K, Ghosh  S, Kammerer  JS, Haddad  MB. Tuberculosis among the homeless, United States, 1994-2010. Int J Tuberc Lung Dis. 2013;17:14149. DOIPubMedGoogle Scholar
  9. Haddad  MB, Mitruka  K, Oeltmann  JE, Johns  EB, Navin  TR. Characteristics of tuberculosis cases that started outbreaks in the United States, 2002-2011. Emerg Infect Dis. 2015;21:50810. DOIPubMedGoogle Scholar
  10. France  AM, Grant  J, Kammerer  JS, Navin  TR. A field-validated approach using surveillance and genotyping data to estimate tuberculosis attributable to recent transmission in the United States. Am J Epidemiol. 2015;182:799807. DOIPubMedGoogle Scholar
  11. Yuen  CM, Kammerer  JS, Marks  K, Navin  TR, France  AM. Recent transmission of tuberculosis—United States, 2011–2014. PLoS One. 2016;11:e0153728. DOIPubMedGoogle Scholar
  12. Shrestha  S, Winglee  K, Hill  AN, Shaw  T, Smith  JP, Kammerer  JS, et al. Model-based analysis of tuberculosis genotype clusters in the United States reveals high degree of heterogeneity in transmission and state-level differences across California, Florida, New York, and Texas. Clin Infect Dis. 2022;75:143341. DOIPubMedGoogle Scholar
  13. Centers for Disease Control and Prevention. 2020 Contact Investigations Report (ARPE Data) [cited 2023 Mar 31]. https://www.cdc.gov/tb/programs/evaluation/arpe-data.htm
  14. Menzies  NA, Swartwood  N, Testa  C, Malyuta  Y, Hill  AN, Marks  SM, et al. Time since infection and risks of future disease for individuals with Mycobacterium tuberculosis infection in the United States. Epidemiology. 2021;32:708. DOIPubMedGoogle Scholar
  15. Trauer  JM, Moyo  N, Tay  E-L, Dale  K, Ragonnet  R, McBryde  ES, et al. Risk of active tuberculosis in the five years following infection . . . 15%? Chest. 2016;149:51625. DOIPubMedGoogle Scholar
  16. Sterling  TR, Villarino  ME, Borisov  AS, Shang  N, Gordin  F, Bliven-Sizemore  E, et al.; TB Trials Consortium PREVENT TB Study Team. Three months of rifapentine and isoniazid for latent tuberculosis infection. N Engl J Med. 2011;365:215566. DOIPubMedGoogle Scholar
  17. International Union Against Tuberculosis Committee on Prophylaxis. Efficacy of various durations of isoniazid preventive therapy for tuberculosis: five years of follow-up in the IUAT trial. Bull World Health Organ. 1982;60:55564.PubMedGoogle Scholar
  18. Velen  K, Shingde  RV, Ho  J, Fox  GJ. The effectiveness of contact investigation among contacts of tuberculosis patients: a systematic review and meta-analysis. Eur Respir J. 2021;58:2100266. DOIPubMedGoogle Scholar
  19. US Department of Health and Human Services Center for Medicare Services. Clinical laboratory fee schedule [cited 2024 Aug 16]. https://www.cms.gov/Medicare/Medicare-Fee-for-Service-Payment/ClinicalLabFeeSched/Clinical-Laboratory-Fee-Schedule-Files.html
  20. Njie  GJ, Young  KH, Beeler Asay  GR. Estimating tuberculosis contact investigation costs in the United States: a systematic review. Poster presented at: National Tuberculosis Controllers Association Annual Conference; Rancho Mirage, California, USA; 2022 May 23–26.
  21. Jo  Y, Shrestha  S, Gomes  I, Marks  S, Hill  A, Asay  G, et al. Model-based cost-effectiveness of state-level latent tuberculosis interventions in California, Florida, New York, and Texas. Clin Infect Dis. 2021;73:e347682. DOIPubMedGoogle Scholar
  22. US Department of Health and Human Services Center for Medicare Services. Physician fee schedule [cited 2024 Aug 16]. https://www.cms.gov/apps/physician-fee-schedule/license-agreement.aspx
  23. Shepardson  D, Marks  SM, Chesson  H, Kerrigan  A, Holland  DP, Scott  N, et al. Cost-effectiveness of a 12-dose regimen for treating latent tuberculous infection in the United States. Int J Tuberc Lung Dis. 2013;17:15317. DOIPubMedGoogle Scholar
  24. Holland  DP, Sanders  GD, Hamilton  CD, Stout  JE. Costs and cost-effectiveness of four treatment regimens for latent tuberculosis infection. Am J Respir Crit Care Med. 2009;179:105560. DOIPubMedGoogle Scholar
  25. Belknap  R, Holland  D, Feng  P-J, Millet  J-P, Caylà  JA, Martinson  NA, et al.; TB Trials Consortium iAdhere Study Team. Self-administered versus directly observed once-weekly isoniazid and rifapentine treatment of latent tuberculosis infection: a randomized trial. Ann Intern Med. 2017;167:68997. DOIPubMedGoogle Scholar
  26. Sotgiu  G, Matteelli  A, Getahun  H, Girardi  E, Sañé Schepisi  M, Centis  R, et al. Monitoring toxicity in individuals receiving treatment for latent tuberculosis infection: a systematic review versus expert opinion. Eur Respir J. 2015;45:11703. DOIPubMedGoogle Scholar
  27. Winston  CA, Marks  SM, Carr  W. Estimated costs of 4-month pulmonary tuberculosis treatment regimen, United States. Emerg Infect Dis. 2023;29:21024. DOIPubMedGoogle Scholar
  28. Guo  N, Marra  CA, Marra  F, Moadebi  S, Elwood  RK, Fitzgerald  JM. Health state utilities in latent and active tuberculosis. Value Health. 2008;11:115461. DOIPubMedGoogle Scholar
  29. Kammerer  JS, Shang  N, Althomsons  SP, Haddad  MB, Grant  J, Navin  TR. Using statistical methods and genotyping to detect tuberculosis outbreaks. Int J Health Geogr. 2013;12:15. DOIPubMedGoogle Scholar
  30. Marks  SM, Flood  J, Seaworth  B, Hirsch-Moverman  Y, Armstrong  L, Mase  S, et al.; TB Epidemiologic Studies Consortium. Treatment practices, outcomes, and costs of multidrug-resistant and extensively drug-resistant tuberculosis, United States, 2005-2007. Emerg Infect Dis. 2014;20:81221. DOIPubMedGoogle Scholar
  31. Taylor  Z, Marks  SM, Ríos Burrows  NM, Weis  SE, Stricof  RL, Miller  B. Causes and costs of hospitalization of tuberculosis patients in the United States. Int J Tuberc Lung Dis. 2000;4:9319.PubMedGoogle Scholar
  32. Bureau of Economic Analysis. Personal consumption expenditures price index: health care [cited 2024 Aug 16]. https://www.bea.gov/data/personal-consumption-expenditures-price-index
  33. Tasillo  A, Salomon  JA, Trikalinos  TA, Horsburgh  CR Jr, Marks  SM, Linas  BP. Cost-effectiveness of testing and treatment for latent tuberculosis infection in residents born outside the United States with and without medical comorbidities in a simulation model. JAMA Intern Med. 2017;177:175564. DOIPubMedGoogle Scholar
  34. Menzies  NA, Shrestha  S, Parriott  A, Marks  SM, Hill  AN, Dowdy  DW, et al. The health and economic benefits of tests that predict future progression to tuberculosis disease. Epidemiology. 2022;33:7583. DOIPubMedGoogle Scholar
  35. Young  KH, Ehman  M, Reves  R, Peterson Maddox  BL, Khan  A, Chorba  TL, et al. Tuberculosis contact investigations—United States, 2003–2012. MMWR Morb Mortal Wkly Rep. 2016;64:136974. DOIPubMedGoogle Scholar
  36. Miramontes  R, Hill  AN, Yelk Woodruff  RS, Lambert  LA, Navin  TR, Castro  KG, et al. Tuberculosis Infection in the United States: Prevalence Estimates from the National Health and Nutrition Examination Survey, 2011-2012. PLoS One. 2015;10:e0140881. DOIPubMedGoogle Scholar
  37. Mirzazadeh  A, Kahn  JG, Haddad  MB, Hill  AN, Marks  SM, Readhead  A, et al. State-level prevalence estimates of latent tuberculosis infection in the United States by medical risk factors, demographic characteristics and nativity. PLoS One. 2021;16:e0249012. DOIPubMedGoogle Scholar
  38. Labuda  SM, McDaniel  CJ, Talwar  A, Braumuller  A, Parker  S, McGaha  S, et al. Tuberculosis outbreak associated with delayed diagnosis and long infectious periods in rural Arkansas, 2010–2018. Public Health Rep. 2022;137:94101. DOIPubMedGoogle Scholar
  39. Althomsons  SP, Winglee  K, Heilig  CM, Talarico  S, Silk  B, Wortham  J, et al. Using machine learning techniques and national tuberculosis surveillance data to predict excess growth in genotyped tuberculosis clusters. Am J Epidemiol. 2022;191:193643. DOIPubMedGoogle Scholar
  40. Jajou  R, de Neeling  A, van Hunen  R, de Vries  G, Schimmel  H, Mulder  A, et al. Epidemiological links between tuberculosis cases identified twice as efficiently by whole genome sequencing than conventional molecular typing: A population-based study. PLoS One. 2018;13:e0195413. DOIPubMedGoogle Scholar
  41. Stucki  D, Ballif  M, Egger  M, Furrer  H, Altpeter  E, Battegay  M, et al. Standard genotyping overestimates transmission of Mycobacterium tuberculosis among immigrants in a low-incidence country. J Clin Microbiol. 2016;54:186270. DOIPubMedGoogle Scholar
  42. Byford  S, Raftery  J. Perspectives in economic evaluation. BMJ. 1998;316:152930. DOIPubMedGoogle Scholar
  43. Menzies  NA, Quaife  M, Allwood  BW, Byrne  AL, Coussens  AK, Harries  AD, et al. Lifetime burden of disease due to incident tuberculosis: a global reappraisal including post-tuberculosis sequelae. Lancet Glob Health. 2021;9:e167987. DOIPubMedGoogle Scholar
  44. Ryckman  T, Robsky  K, Cilloni  L, Zawedde-Muyanja  S, Ananthakrishnan  R, Kendall  EA, et al. Ending tuberculosis in a post-COVID-19 world: a person-centred, equity-oriented approach. Lancet Infect Dis. 2023;23:e5966. DOIPubMedGoogle Scholar

Main Article

Page created: January 17, 2025
Page updated: February 21, 2025
Page reviewed: February 21, 2025
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external