Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link

Disclaimer: Early release articles are not considered as final versions. Any changes will be reflected in the online version in the month the article is officially released.

Volume 31, Number 4—April 2025
Research

Detection and Decontamination of Chronic Wasting Disease Prions during Venison Processing

Marissa Milstein, Sarah C. Gresch, Marc D. Schwabenlander, Manci Li, Jason C. Bartz, Damani N. Bryant, Peter R. Christenson, Laramie L. Lindsey, Nicole Lurndahl, Sang-Hyun Oh, Gage R. Rowden, Rachel L. Shoemaker, Tiffany M. Wolf, Peter A. Larsen, and Stuart S. LichtenbergComments to Author 
Author affiliation: University of Minnesota, St. Paul, Minnesota, USA (M. Milstein, S.C. Gresch, M.D. Schwabenlander, M. Li, D.N. Bryant, L.L. Lindsey, N. Lurndahl, G.R. Rowden, R.L. Shoemaker, T.M. Wolf, P.A. Larsen, S.S. Lichtenberg); University of Minnesota, Minneapolis, Minnesota, USA (M. Li, P.R. Christenson, S.-H. Oh); Creighton University, Omaha, Nebraska, USA (J.C. Bartz)

Main Article

Figure 4

Results of real-time quaking-induced conversion in study of detection and decontamination of chronic wasting disease prions during venison processing. Results are shown for the CWD-positive muscle homogenate (positive pool), CWD-negative muscle homogenate before passing through a contaminated grinder (negative pool), and the CWD-negative muscle homogenate after passing through a contaminated meat grinder (contaminated pool). A) Rate of amyloid formation; B) maxpoint ratio (ratio of the maximum value to the initial reading) (28); C) maximum slope. NS, not statistically significant.

Figure 4. Results of real-time quaking-induced conversion in study of detection and decontamination of chronic wasting disease prions during venison processing. Results are shown for the CWD-positive muscle homogenate (positive pool), CWD-negative muscle homogenate before passing through a contaminated grinder (negative pool), and the CWD-negative muscle homogenate after passing through a contaminated meat grinder (contaminated pool). A) Rate of amyloid formation; B) maxpoint ratio (ratio of the maximum value to the initial reading) (28); C) maximum slope. NS, not statistically significant.

Main Article

References
  1. Prusiner  SB. Novel proteinaceous infectious particles cause scrapie. Science. 1982;216:13644. DOIPubMedGoogle Scholar
  2. Miller  MW, Williams  ES. Chronic wasting disease of cervids. In: Harris DA, editor. Mad cow disease and related spongiform encephalopathies. Berlin: Springer; 2004. p. 193–214.
  3. Williams  ES, Young  S. Chronic wasting disease of captive mule deer: a spongiform encephalopathy. J Wildl Dis. 1980;16:8998. DOIPubMedGoogle Scholar
  4. US Geological Survey. Distribution of chronic wasting disease in North America [cited 2024 May 22]. https://www.usgs.gov/media/images/distribution-chronic-wasting-disease-north-america-0
  5. National Deer Association. NDA’s deer report 2023 [cited 2024 Aug 7]. https://deerassociation.com/wp-content/uploads/2023/02/NDA-DR2023-FINAL.pdf
  6. Manitoba Wildlife Federation. The challenge of CWD: insidious, dire and urgent, late-breaking research reinforces the need for action [cited 2024 May 22]. https://mwf.mb.ca/archives/709
  7. Li  M, Schwabenlander  MD, Rowden  GR, Schefers  JM, Jennelle  CS, Carstensen  M, et al. RT-QuIC detection of CWD prion seeding activity in white-tailed deer muscle tissues. Sci Rep. 2021;11:16759. DOIPubMedGoogle Scholar
  8. Centers for Disease Control and Prevention. About chronic wasting disease (CWD) [cited 2024 May 22]. https://www.cdc.gov/chronic-wasting/about/index.html
  9. Tranulis  MA, Tryland  M. The zoonotic potential of chronic wasting disease—a review. Foods. 2023;12:824. DOIPubMedGoogle Scholar
  10. Otero  A, Duque Velasquez  C, McKenzie  D, Aiken  J. Emergence of CWD strains. Cell Tissue Res. 2023;392:13548. DOIPubMedGoogle Scholar
  11. Cassmann  ED, Frese  AJ, Moore  SJ, Greenlee  JJ. Transmission of raccoon-passaged chronic wasting disease agent to white-tailed deer. Viruses. 2022;14:1578. DOIPubMedGoogle Scholar
  12. Henderson  DM, Davenport  KA, Haley  NJ, Denkers  ND, Mathiason  CK, Hoover  EA. Quantitative assessment of prion infectivity in tissues and body fluids by real-time quaking-induced conversion. J Gen Virol. 2015;96:2109. DOIPubMedGoogle Scholar
  13. Tennant  JM, Li  M, Henderson  DM, Tyer  ML, Denkers  ND, Haley  NJ, et al. Shedding and stability of CWD prion seeding activity in cervid feces. PLoS One. 2020;15:e0227094. DOIPubMedGoogle Scholar
  14. Miller  MW, Williams  ES, Hobbs  NT, Wolfe  LL. Environmental sources of prion transmission in mule deer. Emerg Infect Dis. 2004;10:10036. DOIPubMedGoogle Scholar
  15. Escobar  LE, Pritzkow  S, Winter  SN, Grear  DA, Kirchgessner  MS, Dominguez-Villegas  E, et al. The ecology of chronic wasting disease in wildlife. Biol Rev Camb Philos Soc. 2020;95:393408. DOIPubMedGoogle Scholar
  16. Orrú  CD, Groveman  BR, Hughson  AG, Barrio  T, Isiofia  K, Race  B, et al. Sensitive detection of pathological seeds of α-synuclein, tau and prion protein on solid surfaces. PLoS Pathog. 2024;20:e1012175. DOIPubMedGoogle Scholar
  17. Georgsson  G, Sigurdarson  S, Brown  P. Infectious agent of sheep scrapie may persist in the environment for at least 16 years. J Gen Virol. 2006;87:373740. DOIPubMedGoogle Scholar
  18. Yuan  Q, Rowden  G, Wolf  TM, Schwabenlander  MD, Larsen  PA, Bartelt-Hunt  SL, et al. Sensitive detection of chronic wasting disease prions recovered from environmentally relevant surfaces. Environ Int. 2022;166:107347. DOIPubMedGoogle Scholar
  19. Soto  P, Bravo-Risi  F, Benavente  R, Lichtenberg  S, Lockwood  M, Reed  JH, et al. Identification of chronic wasting disease prions in decaying tongue tissues from exhumed white-tailed deer. MSphere. 2023;8:e0027223. DOIPubMedGoogle Scholar
  20. Chesney  AR, Booth  CJ, Lietz  CB, Li  L, Pedersen  JA. Peroxymonosulfate rapidly inactivates the disease-associated prion protein. Environ Sci Technol. 2016;50:7095105. DOIPubMedGoogle Scholar
  21. Williams  K, Hughson  AG, Chesebro  B, Race  B. Inactivation of chronic wasting disease prions using sodium hypochlorite. PLoS One. 2019;14:e0223659. DOIPubMedGoogle Scholar
  22. Hughson  AG, Race  B, Kraus  A, Sangaré  LR, Robins  L, Groveman  BR, et al. Inactivation of prions and amyloid seeds with hypochlorous acid. PLoS Pathog. 2016;12:e1005914. DOIPubMedGoogle Scholar
  23. Gavin  C, Henderson  D, Benestad  SL, Simmons  M, Adkin  A. Estimating the amount of Chronic Wasting Disease infectivity passing through abattoirs and field slaughter. Prev Vet Med. 2019;166:2838. DOIPubMedGoogle Scholar
  24. Nastasijevic  I, Boskovic  M, Glisic  M. Abattoir hygiene. In: Knowles ME, Anelich LE, Boobis AR, Popping B, editors. Present knowledge in food safety: a risk-based approach through the food chain. San Diego: Academic Press; 2023. p. 412–38.
  25. Atarashi  R, Sano  K, Satoh  K, Nishida  N. Real-time quaking-induced conversion: a highly sensitive assay for prion detection. Prion. 2011;5:1503. DOIPubMedGoogle Scholar
  26. Haley  NJ, Van de Motter  A, Carver  S, Henderson  D, Davenport  K, Seelig  DM, et al. Prion-seeding activity in cerebrospinal fluid of deer with chronic wasting disease. PLoS One. 2013;8:e81488. DOIPubMedGoogle Scholar
  27. Gallups  NJ, Harms  AS. ‘Seeding’ the idea of early diagnostics in synucleinopathies. Brain. 2022;145:4189. DOIPubMedGoogle Scholar
  28. Rowden  GR, Picasso-Risso  C, Li  M, Schwabenlander  MD, Wolf  TM, Larsen  PA. Standardization of data analysis for RT-QuIC-based detection of chronic wasting disease. Pathogens. 2023;12:309. DOIPubMedGoogle Scholar
  29. Wilham  JM, Orrú  CD, Bessen  RA, Atarashi  R, Sano  K, Race  B, et al. Rapid end-point quantitation of prion seeding activity with sensitivity comparable to bioassays. PLoS Pathog. 2010;6:e1001217. DOIPubMedGoogle Scholar
  30. Cooke  CM, Rodger  J, Smith  A, Fernie  K, Shaw  G, Somerville  RA. Fate of prions in soil: detergent extraction of PrP from soils. Environ Sci Technol. 2007;41:8117. DOIPubMedGoogle Scholar
  31. Pitardi  D, Meloni  D, Maurella  C, Di Vietro  D, Nocilla  L, Piscopo  A, et al. Specified risk material removal practices: can we reduce the BSE hazard to human health? Food Control. 2013;30:66874. DOIGoogle Scholar

Main Article

Page created: February 07, 2025
Page updated: March 13, 2025
Page reviewed: March 13, 2025
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external