Molecular Barriers to Zoonotic Transmission of Prions
Marcelo A. Barria, Aru Balachandran, Masanori Morita, Tetsuyuki Kitamoto, Rona Barron, Jean Manson, Richard Knight, James W. Ironside, and Mark W. Head
Author affiliations: The University of Edinburgh, Edinburgh, Scotland, UK (M.A. Barria, R. Knight, J.W. Ironside, M.W Head); Canadian Food Inspection Agency, Ottawa, Ontario, Canada (A. Balachandran); Japan Blood Products Organization, Kobe, Japan (M. Morita); Tohoku University Graduate School of Medicine, Sendai, Japan (T. Kitamoto); University of Edinburgh, Easter Bush, Scotland, UK (R. Barron, J. Manson)
Main Article
Figure 4
Figure 4. . Relative conversion efficiency of human PrP (129M) by different animal prion disease samples. Brain homogenates from animal prion diseases were seeded at different volumes adjusted to give roughly equivalent amounts of seeding PrPres and amplified by using PrP 129M-containing human brain substrate. Human PrPres formation was detected by the 3F4 antibody (A) and seed and newly formed PrPres detected using the 6H4 antibody (B). PrP, protein prion; PrPres, protease-resistant PrP; M, molecular marker; BSE, bovine spongiform encephalopathy; CWD, chronic wasting disease; L-BSE, L-type BSE; H-BSE, H-type BSE; vCJD variant Creutzfeldt-Jakob disease; M, molecular marker.
Main Article
Page created: January 03, 2014
Page updated: January 03, 2014
Page reviewed: January 03, 2014
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.