Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 22, Number 12—December 2016

African Horse Sickness Caused by Genome Reassortment and Reversion to Virulence of Live, Attenuated Vaccine Viruses, South Africa, 2004–2014

Camilla Weyer, John D. Grewar, Phillippa Burger, Esthea Rossouw, Carina Lourens, Christopher Joone, Misha le Grange, Peter Coetzee, Estelle H. Venter, Darren P. Martin, N. James MacLachlan, and Alan J. GuthrieComments to Author 
Author affiliations: University of Pretoria, Onderstepoort, South Africa (C.T. Weyer, P. Burger, C. Lourens, C. Joone, M. le Grange, P. Coetzee, E. Venter, N.J. MacLachlan, A.J. Guthrie); Western Cape Department of Agriculture, Elsenburg, South Africa (J.D. Grewar); Wits Health Consortium, Johannesburg, South Africa (E. Rossouw); University of Cape Town, Cape Town, South Africa (D.P. Martin); University of California, Davis, CA, USA (N.J. MacLachlan)

Main Article

Table 2

Epidemiologic parameters for 4 outbreaks involving AHS virus type 1 in the AHS controlled area in Western Cape Province, South Africa, 2004–2014*

Parameter† 2004 Stellenbosch 2011 Mamre 2014 Porterville 2014 Robertson
No. confirmed cases 23 (16)‡ 84 (73)§ 89 22
No. deaths 18 (16)‡ 64 (64)§ 13 1
Case-fatality rate, %
78.3 (100)‡
76.2 (87.7)§
No. subclinical cases 0 15 (4)† 52 17
% Subclinical
17.9 (5.5)§
No. vaccinated cases 2/23 2/84 35/89 3/22
% Vaccinated
No. properties affected 10 (8)‡ 47 (45)§ 31 8

*AHS, African horse sickness.
†The parameters were calculated by using the current World Organization for Animal Health (OIE) case definition. Parameters calculated by using the case definitions when the outbreaks occurred are in parenthesis for the 2004 and 2011 outbreaks.
‡An additional 5 clinical cases and 2 deaths that met the criteria of the current OIE AHS case definition were not included based on the case definition in place at the time of this outbreak (13).
§An additional 11 subclinical cases that met the criteria of the current OIE AHS case definition were not included based on the case definition in place at the time of this outbreak (15).

Main Article

  1. Zientara  S, Weyer  CT, Lecollinet  S. African horse sickness. Rev Sci Tech. 2015;34:31527. DOIPubMedGoogle Scholar
  2. Du Toit  RM. Transmission of blue-tongue and horse-sickness by Culicoides. Onderstepoort J Vet Sci Anim Ind. 1944;19:716.
  3. Maclachlan  NJ, Guthrie  AJ. Re-emergence of bluetongue, African horse sickness, and other orbivirus diseases. Vet Res. 2010;41:35. DOIPubMedGoogle Scholar
  4. Maclachlan  NJ, Mayo  CE. Potential strategies for control of bluetongue, a globally emerging, Culicoides-transmitted viral disease of ruminant livestock and wildlife. Antiviral Res. 2013;99:7990. DOIPubMedGoogle Scholar
  5. Guichard  S, Guis  H, Tran  A, Garros  C, Balenghien  T, Kriticos  DJ. Worldwide niche and future potential distribution of Culicoides imicola, a major vector of bluetongue and African horse sickness viruses. PLoS One. 2014;9:e112491. DOIPubMedGoogle Scholar
  6. Maclachlan  NJ, Mayo  CE, Daniels  PW, Savini  G, Zientara  S, Gibbs  EPJ. Bluetongue. Rev Sci Tech. 2015;34:32940. DOIPubMedGoogle Scholar
  7. Guthrie  AJ, Weyer  CT. African horse sickness. In: Sprayberry KA, Robinson NE, editors. Robinson’s current therapy in equine medicine. 7th ed. Philadelphia: Saunders; 2015. p. 150–1.
  8. Theiler  A. Die Sudafrikanische Pferdesterbe. Deuts Tierarztl Wschr. 1901;9:201–3, 221–6, 233–7, 241.
  9. M’Fadyean  J. African horse sickness. J Comp Pathol Ther. 1900;13:120 .DOIGoogle Scholar
  10. von Teichman  BF, Dungu  B, Smit  TK. In vivo cross-protection to African horse sickness serotypes 5 and 9 after vaccination with serotypes 8 and 6. Vaccine. 2010;28:650517. DOIPubMedGoogle Scholar
  11. World Organization for Animal Health. Infection with African horse sickness virus. Terrestrial Animal Health Code, 2015 [cited 2016 Jul 5].
  12. Republic of South Africa Department of Agriculture, Forestry, and Fisheries. Animal Diseases Act, 1984 [cited 2016 Jul 5].
  13. Sinclair  M, Bührmann  G, Gummow  B. An epidemiological investigation of the African horsesickness outbreak in the Western Cape Province of South Africa in 2004 and its relevance to the current equine export protocol. J S Afr Vet Assoc. 2006;77:1916. DOIPubMedGoogle Scholar
  14. Quan  M, van Vuuren  M, Howell  PG, Groenewald  D, Guthrie  AJ. Molecular epidemiology of the African horse sickness virus S10 gene. J Gen Virol. 2008;89:115968. DOIPubMedGoogle Scholar
  15. Grewar  JD, Weyer  CT, Guthrie  AJ, Koen  P, Davey  S, Quan  M, The 2011 outbreak of African horse sickness in the African horse sickness controlled area in South Africa. J S Afr Vet Assoc. 2013;84:17 .DOIGoogle Scholar
  16. Grewar  JD. Suspected African horse sickness outbreak—Melkbosstrand. Western Cape Government Epidemiology Report, 2013;5(5) [cited 2016 Jul 5].
  17. Grewar  JD. African horse sickness outbreak resolved. Western Cape Government Epidemiology Report, 2014;6(6) [cited 2016 Jul 5].
  18. World Organization for Animal Health. African horse sickness, South Africa [cited 2016 Jul 5].
  19. World Organization for Animal Health. African horse sickness, South Africa [cited 2016 Jul 5].
  20. Guthrie  AJ, Coetzee  P, Martin  DP, Lourens  CW, Venter  EH, Weyer  CT, Complete genome sequences of the three African horse sickness virus strains from a commercial trivalent live attenuated vaccine. Genome Announc. 2015;3:e008145. http://dx.doi.org10.1128/genomeA.00814-15PubMedGoogle Scholar
  21. Guthrie  AJ, Coetzee  P, Martin  DP, Lourens  CW, Venter  EH, Weyer  CT, Complete genome sequences of the four African horse sickness virus strains from a commercial tetravalent live attenuated vaccine. Genome Announc. 2015;3:e0137515. http://dx.doi.org10.1128/genomeA.01375-15PubMedGoogle Scholar
  22. Guthrie  AJ, Maclachlan  NJ, Joone  C, Lourens  CW, Weyer  CT, Quan  M, Diagnostic accuracy of a duplex real-time reverse transcription quantitative PCR assay for detection of African horse sickness virus. J Virol Methods. 2013;189:305. DOIPubMedGoogle Scholar
  23. Weyer  CT, Joone  C, Lourens  CW, Monyai  MS, Koekemoer  O, Grewar  JD, Development of three triplex real-time reverse transcription PCR assays for the qualitative molecular typing of the nine serotypes of African horse sickness virus. J Virol Methods. 2015;223:6974. DOIPubMedGoogle Scholar
  24. Potgieter  AC, Page  NA, Liebenberg  J, Wright  IM, Landt  O, van Dijk  AA. Improved strategies for sequence-independent amplification and sequencing of viral double-stranded RNA genomes. J Gen Virol. 2009;90:142332. DOIPubMedGoogle Scholar
  25. Kearse  M, Moir  R, Wilson  A, Stones-Havas  S, Cheung  M, Sturrock  S, Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28:16479. DOIPubMedGoogle Scholar
  26. Katoh  K, Standley  DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30:77280. DOIPubMedGoogle Scholar
  27. Guindon  S, Dufayard  JF, Lefort  V, Anisimova  M, Hordijk  W, Gascuel  O. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol. 2010;59:30721. DOIPubMedGoogle Scholar
  28. Pommier  T, Canbäck  B, Lundberg  P, Hagström  A, Tunlid  A. RAMI: a tool for identification and characterization of phylogenetic clusters in microbial communities. Bioinformatics. 2009;25:73642. DOIPubMedGoogle Scholar
  29. Martin  DP, Murrel  B, Golden  M, Khoosal  A, Muhire  B. RDP4: detection and analysis of recombination patterns in virus genomes. Virus Evol. 2015;1:1–5. DOIGoogle Scholar
  30. Sugiyama  K, Bishop  DHL, Roy  P. Analysis of the genomes of bluetongue viruses recovered from different states of the United States and at different times. Am J Epidemiol. 1982;115:33247.PubMedGoogle Scholar
  31. Nomikou  K, Hughes  J, Wash  R, Kellam  P, Breard  E, Zientara  S, Widespread reassortment shapes the evolution and epidemiology of bluetongue virus following European invasion. PLoS Pathog. 2015;11:e1005056. DOIPubMedGoogle Scholar
  32. Weyer  CT, Quan  M, Joone  C, Lourens  CW, MacLachlan  NJ, Guthrie  AJ. African horse sickness in naturally infected, immunised horses. Equine Vet J. 2013;45:1179. DOIPubMedGoogle Scholar
  33. Martin  LA, Meyer  AJ, O’Hara  RS, Fu  H, Mellor  PS, Knowles  NJ, Phylogenetic analysis of African horse sickness virus segment 10: sequence variation, virulence characteristics and cell exit. Arch Virol Suppl. 1998;14:28193.PubMedGoogle Scholar
  34. Huismans  H, van Staden  V, Fick  WC, van Niekerk  M, Meiring  TL. A comparison of different orbivirus proteins that could affect virulence and pathogenesis. Vet Ital. 2004;40:41725.PubMedGoogle Scholar
  35. Potgieter  AC, Wright  IM, van Dijk  AA. Consensus sequence of 27 African horse sickness virus genomes from viruses collected over a 76-year period (1933 to 2009). Genome Announc. 2015;3:e0092115. DOIPubMedGoogle Scholar
  36. Nevill  EM, Venter  GJ, Edwardes  M, Pajor  ITP, Meiswinkel  R, van Gas  JH. Culicoides species associated with livestock in the Stellenbosch area of the Western Cape Province, Republic of South Africa (Diptera: Ceratopogonidae). Onderstepoort J Vet Res. 1988;55:1016.PubMedGoogle Scholar
  37. Guthrie  AJ, Quan  M, Lourens  CW, Audonnet  JC, Minke  JM, Yao  J, Protective immunization of horses with a recombinant canarypox virus vectored vaccine co-expressing genes encoding the outer capsid proteins of African horse sickness virus. Vaccine. 2009;27:44348. DOIPubMedGoogle Scholar
  38. Alberca  B, Bachanek-Bankowska  K, Cabana  M, Calvo-Pinilla  E, Viaplana  E, Frost  L, Vaccination of horses with a recombinant modified vaccinia Ankara virus (MVA) expressing African horse sickness (AHS) virus major capsid protein VP2 provides complete clinical protection against challenge. Vaccine. 2014;32:36704. DOIPubMedGoogle Scholar

Main Article

Page created: November 17, 2016
Page updated: November 17, 2016
Page reviewed: November 17, 2016
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.