Characterization of Fitzroy River Virus and Serologic Evidence of Human and Animal Infection
Cheryl A. Johansen
1 , Simon H. Williams
1, Lorna Melville, Jay Nicholson, Roy A. Hall, Helle Bielefeldt-Ohmann, Natalie A. Prow, Glenys R. Chidlow, Shani Wong, Rohini Sinha, David T. Williams, W. Ian Lipkin, and David W. Smith
Author affiliations: The University of Western Australia, Nedlands, Western Australia, Australia (C.A. Johansen, J. Nicholson, S. Wong, D.W. Smith); PathWest Laboratory Medicine Western Australia, Nedlands (C.A. Johansen, G.R. Chidlow, D.W. Smith); Columbia University, New York, New York, USA (S.H. Williams, R. Sinha, W.I. Lipkin); The Northern Territory Government, Darwin, Northern Territory, Australia (L.F. Melville); The University of Queensland, St. Lucia, Queensland, Australia (R.A. Hall, H. Bielefeldt-Ohmann, N.A. Prow); The University of Queensland, Gatton, Queensland, Australia (H. Bielefeldt-Ohmann); CSIRO Australian Animal Health Laboratory, Geelong, Victoria, Australia (D.T. Williams)
Main Article
Figure 2
Figure 2. Phylogenetic tree of the genus Flavivirus, based on full polyprotein nucleotide sequences. Asterisk (*) indicates Fitzroy River virus. Scale bar indicates nucleotide substitutions per site. YFV, yellow fever virus.
Main Article
Page created: July 17, 2017
Page updated: July 17, 2017
Page reviewed: July 17, 2017
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.