Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link

Disclaimer: Early release articles are not considered as final versions. Any changes will be reflected in the online version in the month the article is officially released.

Volume 26, Number 12—December 2020
Research Letter

Effects of Cocooning on Coronavirus Disease Rates after Relaxing Social Distancing

Xutong Wang, Zhanwei Du, George Huang, Remy F. Pasco, Spencer J. Fox, Alison P. Galvani, Michael Pignone, S. Claiborne Johnston, and Lauren Ancel MeyersComments to Author 
Author affiliations: The University of Texas at Austin, Austin, Texas, USA (X. Wang, Z. Du, G. Huang, R.F. Pasco, S.J. Fox, L. Ancel Meyers); Yale School of Public Health, New Haven, Connecticut, USA (A.P. Galvani); T; he University of Texas at Austin Dell Medical School, Austin (M. Pignone, S. Claiborne Johnston); Santa Fe Institute, Santa Fe, New Mexico, USA (L. Ancel Meyers)

Suggested citation for this article


As coronavirus disease spreads throughout the United States, policymakers are contemplating reinstatement and relaxation of shelter-in-place orders. By using a model capturing high-risk populations and transmission rates estimated from hospitalization data, we found that postponing relaxation will only delay future disease waves. Cocooning vulnerable populations can prevent overwhelming medical surges.

In March 2020, cities and states throughout the United States issued social distancing orders to mitigate the coronavirus disease (COVID-19) pandemic (1). In response to growing political and economic pressures, the White House and the Centers for Disease Control and Prevention issued guidelines for relaxing such measures on April 16, 2020 (2). However, the gating criteria in these guidelines do not include provisions, such as cocooning, to protect vulnerable populations. Residents of long-term care facilities (LTCFs) are particularly vulnerable because of congregate living, shortages in qualified workers, and the need for physical contact between caregivers and residents. In LTCFs, cocooning includes measures to increase staff; cohort residents; test for severe acute respiratory syndrome 2 (SARS-CoV-2), the causative agent of COVID-19; and assess availability of personal protective equipment and other infection control resources (3). Among other groups, cocooning involves incentivizing persons with high-risk underlying conditions to remain at home, helping persons experiencing homelessness to social distance, and broadly encouraging hand hygiene and facemask wearing for persons at high risk for severe illness or death and their caregivers (4).

By June 16, 2020, nursing home residents constituted 42.8% (50,919/119,055) of US COVID-19 deaths (5). In Austin, Texas, patients in LTCFs represented approximately half the COVID-19 deaths and >20% (81/398) of COVID-19 hospitalizations among persons with known residence (6).

To quantify the need for proactively protecting these vulnerable populations, we projected the effects of relaxation of shelter-in-place orders, with and without additional cocooning measures. We built a granular mathematical model of COVID-19 spread in US cities that incorporates age-specific and risk-stratified heterogeneity in the transmission and severity of COVID-19 (Appendix) (7). The model uses 70 stochastic differential equations to track the disease status in 10 subpopulations: low-risk and high-risk persons in each of 5 age groups, 0–4 years, 5–17 years, 18–49 years, 50–64 years, and >64 years of age. We focused on the Austin-Round Rock Metropolitan Statistical Area in Texas, the fastest-growing large city area in the United States, because we provide decision support for city leaders and have access to patient-level COVID-19 hospitalization and death data.

Persons initially are susceptible SARS-CoV-2 and infection rates are dependent on age-specific contact rates and prevalence of infection. Upon infection, persons incubate SARS-CoV-2 asymptomatically before progressing to a symptomatic or asymptomatic infectious state. Depending on age and risk group, symptomatic COVID-19 case-patients might be hospitalized and die. To model cocooning of high-risk populations, we reduced the transmission rate to and from persons >64 years of age and in younger high-risk subgroups.


Thumbnail of Projected coronavirus disease (COVID-19) hospitalizations during February 16–December 31, 2020, in the Austin-Round Rock Metropolitan Statistical Area, Texas, USA, assuming strict social distancing measures are relaxed on May 1, 2020. A) To calibrate transmission rates before and after Austin’s March 24 Stay Home–Work Safe Order (order 20200324-007;, we used least squares to fit our age- and risk-structured susceptible-exposed-infection-recover (SEIR) co

Figure. Projected coronavirus disease (COVID-19) hospitalizations during February 16–December 31, 2020, in the Austin-Round Rock Metropolitan Statistical Area, Texas, USA, assuming strict social distancing measures are relaxed on May 1, 2020. A)...

Social distancing began in Austin with school closures on March 14, 2020 and ramped up on March 24, 2020 with a Stay Home–Work Safe order (order 20200324-007; We assumed published values for most model parameters (Table; Appendix) and calibrated the transmission rate before and after the stay-home order based on hospitalization counts (Figure). During March 24–April 23, data suggest that SARS-CoV-2 transmission dropped by 70% (95% CI 45%–100%). If social distancing measures were completely relaxed on May 1, 2020, we estimated that COVID-19 hospitalizations would surpass Austin’s surge capacity of 3,440 beds in 27 (95% CI 16–43) days, on May 28 (Figure). Assuming instead that individual behavior and public health efforts continued to reduce transmission by 75% relative to the stay-home order, hospital surge capacity would be reached after 84 (95% CI 41–137) days, on July 24. When we superimposed cocooning to reduce transmission risk by 125% relative to the stay-home period for 547,474 persons at high risk among the total population of 2,168,316 (Appendix), Austin could avoid hospital surge and reduce cumulative COVID-19 hospitalizations by 62% and deaths by 70% (Appendix Table 1). Postponing relaxation of shelter-in-place measures would not prevent a second pandemic wave but could buy more time to protect vulnerable populations (Appendix Figure 1).

Cities likely will experience additional waves of COVID-19 when social distancing orders are relaxed. Our model indicates that Austin must aggressively reduce SARS-CoV-2 spread to avoid overwhelming hospital capacity by the end of 2020. Without cocooning, measures that reduce transmission with >90% the efficacy of the stay-home order are needed; with cocooning, social distancing measures for persons at lower risk can be more relaxed (Appendix Figure 1). Cocooning of older adults and persons with known high-risk conditions (8) can protect thousands in Austin and millions worldwide. The high-risk population in Austin, like many cities, is diverse; 66% are >65 years of age, »5,000 are residents in LTCs, and almost 3,000 are persons experiencing homelessness (9). Cocooning should be resourced proactively and tailored to meet the distinct needs of high-risk subgroups, including work-at-home and paid leave programs that enable high-risk workers to self-isolate (10). Concerted efforts also are needed to shelter residents of LTCs (3) and persons experiencing homelessness, where risks are compounded by group living conditions that amplify COVID-19 transmission. Thus, cocooning should be added to the national gating criteria prior to relaxation of social distancing.

Ms. Wang is a PhD candidate at the University of Texas at Austin under the supervision of Dr. Ancel Meyers. Her research interest is in mathematical and statistical modeling of infectious disease dynamics.



This article was published as a preprint at



  1. Mervosh  S, Lu  D, Swales  V. See which states and cities have told residents to stay at home. NY Times. 2020 Apr 20 [cited 2020 Jun 1].
  2. White House, Centers for Disease Control and Prevention. Guidelines: opening up America again. Washington: The White House and The Centers; 2020 [cited 2020 Jun 1].
  3. Centers for Disease Control and Prevention. Coronavirus disease 2019 (COVID-19): performing facility-wide SARS-CoV-2 testing in nursing homes [cited 2020 Jun 1].
  4. Centers for Disease Control and Prevention. Coronavirus disease 2019 (COVID-19): CDC COVID data tracker. 2020 Jun 17 [cited 2020 Jun 22].
  5. Kamp  J, Mathews  AW. Coronavirus deaths in U.S. nursing, long-term care facilities top 50,000. WSJ Online. 2020 Jun 16 [cited 2020 Jun 16].
  6. Plohetski  T. Coronavirus chronicles: heartache inside Austin, Texas, nursing home. USA Today. 2020 May 8 [cited 2020 Jun 20].
  7. Wang  X, Pasco  RF, Du  Z, Petty  M, Fox  SJ, Galvani  AP, et al. Impact of social distancing measures on coronavirus disease healthcare demand, central Texas, USA. Emerg Infect Dis. 2020 [Epub ahead of print].
  8. US Centers for Disease Control and Prevention. Coronavirus disease 2019 (COVID-19): people with certain medical conditions [cited 2020 Jun 1].
  9. ECHO. 2020 Point-in-time count results 2020 May 18 [cited 2020 Jun 20]
  10. US Department of Labor. Temporary rule: paid leave under the families first coronavirus response act [cited 2020 Jun 18].




Suggested citation for this article: Wang X, Du Z, Huang G, Pasco RF, Fox SJ, Galvani AP, et al. Effects of cocooning on coronavirus disease rates after relaxing social distancing. Emerg Infect Dis. 2020 Dec [date cited].

DOI: 10.3201/eid2612.201930

Original Publication Date: September 21, 2020

Table of Contents – Volume 26, Number 12—December 2020


Please use the form below to submit correspondence to the authors or contact them at the following address:

Lauren Ancel Meyers, Department of Integrative Biology; 1 University Station C0990; Austin, TX 78712, USA

Send To

character(s) remaining.

Comment submitted successfully, thank you for your feedback.


Page created: September 08, 2020
Page updated: September 21, 2020
Page reviewed: September 21, 2020
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.