Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 31, Number 3—March 2025
Research

High Prevalence of atpE Mutations in Bedaquiline-Resistant Mycobacterium tuberculosis Isolates, Russia

Danila ZimenkovComments to Author , Anastasia Ushtanit, Elizaveta Gordeeva, Elena Guselnikova, Yakov Schwartz, and Natalia Stavitskaya
Author affiliation: Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia (D. Zimenkov, A. Ushtanit); Federal State Budgetary Institution Novosibirsk TB Research Institute, Ministry of Health, Novosibirsk, Russia (E. Gordeeva, E. Guselnikova, Y. Schwartz, N. Stavitskaya)

Main Article

Table 3

Bedaquiline MIC values and allele frequencies of mutations in genes associated with bedaquiline resistance for sequential isolates for patient from study of high prevalence of atpE mutations in bedaquiline-resistant Mycobacterium tuberculosis isolates, Russia*

Gene or intergenic region Amino acid substitution Isolate Af.102, day 236 Isolate Af.103, day 406 Isolate Af.104, day 580 Isolate Af.105, day 672 Isolate Af.106, day 1,489
Bedaquiline MIC (7H11) 0.25 0.25 0.25 1 1
Bedaquiline MIC (MGIT 960) 2 4 4 8 16
AtpE Ala63Val 99% 100% 99% 100%
MmpR5 (Rv0678) Leu142Arg 100% 99% 98% 100% 100%
MmpL4 Val341fs 75% 98%

*Patient described by Peretokina et al. (12). Percentages indicate relative number of reads with mutations.

Main Article

References
  1. World Health Organization. Global tuberculosis report 2023. Geneva: The Organization; 2023.
  2. Dartois  V, Rubin  EJ. Shortening tuberculosis treatment—a strategic retreat. N Engl J Med. 2023;388:93941. DOIPubMedGoogle Scholar
  3. Andries  K, Verhasselt  P, Guillemont  J, Göhlmann  HWH, Neefs  JM, Winkler  H, et al. A diarylquinoline drug active on the ATP synthase of Mycobacterium tuberculosis. Science. 2005;307:2237. DOIPubMedGoogle Scholar
  4. Koul  A, Vranckx  L, Dhar  N, Göhlmann  HWH, Özdemir  E, Neefs  JM, et al. Delayed bactericidal response of Mycobacterium tuberculosis to bedaquiline involves remodelling of bacterial metabolism. Nat Commun. 2014;5:3369. DOIPubMedGoogle Scholar
  5. Hartkoorn  RC, Uplekar  S, Cole  ST. Cross-resistance between clofazimine and bedaquiline through upregulation of MmpL5 in Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2014;58:297981. DOIPubMedGoogle Scholar
  6. Andries  K, Villellas  C, Coeck  N, Thys  K, Gevers  T, Vranckx  L, et al. Acquired resistance of Mycobacterium tuberculosis to bedaquiline. PLoS One. 2014;9:e102135. DOIPubMedGoogle Scholar
  7. Somoskovi  A, Bruderer  V, Hömke  R, Bloemberg  GV, Böttger  EC. A mutation associated with clofazimine and bedaquiline cross-resistance in MDR-TB following bedaquiline treatment. Eur Respir J. 2015;45:5547. DOIPubMedGoogle Scholar
  8. Bloemberg  GV, Keller  PM, Stucki  D, Trauner  A, Borrell  S, Latshang  T, et al. Acquired resistance to bedaquiline and delamanid in therapy for tuberculosis. N Engl J Med. 2015;373:19868. DOIPubMedGoogle Scholar
  9. Zimenkov  DV, Nosova  EY, Kulagina  EV, Antonova  OV, Arslanbaeva  LR, Isakova  AI, et al. Examination of bedaquiline- and linezolid-resistant Mycobacterium tuberculosis isolates from the Moscow region. J Antimicrob Chemother. 2017;72:19016. DOIPubMedGoogle Scholar
  10. Wells  RM, Jones  CM, Xi  Z, Speer  A, Danilchanka  O, Doornbos  KS, et al. Discovery of a siderophore export system essential for virulence of Mycobacterium tuberculosis. PLoS Pathog. 2013;9:e1003120. DOIPubMedGoogle Scholar
  11. Miotto  P, Cirillo  DM, Schön  T, Köser  CU. The exceptions that prove the rule-a historical view of bedaquiline susceptibility. Genome Med. 2024;16:39. DOIPubMedGoogle Scholar
  12. Peretokina  IV, Krylova  LY, Antonova  OV, Kholina  MS, Kulagina  EV, Nosova  EY, et al. Reduced susceptibility and resistance to bedaquiline in clinical M. tuberculosis isolates. J Infect. 2020;80:52735. DOIPubMedGoogle Scholar
  13. Kaniga  K, Lounis  N, Zhuo  S, Bakare  N, Andries  K. Impact of Rv0678 mutations on patients with drug-resistant TB treated with bedaquiline. Int J Tuberc Lung Dis. 2022;26:5713. DOIPubMedGoogle Scholar
  14. Hu  Y, Fan  J, Zhu  D, Liu  W, Li  F, Li  T, et al. Investigation of bedaquiline resistance and genetic mutations in multi-drug resistant Mycobacterium tuberculosis clinical isolates in Chongqing, China. Ann Clin Microbiol Antimicrob. 2023;22:19. DOIPubMedGoogle Scholar
  15. Derendinger  B, Dippenaar  A, de Vos  M, Huo  S, Alberts  R, Tadokera  R, et al. Bedaquiline resistance in patients with drug-resistant tuberculosis in Cape Town, South Africa: a retrospective longitudinal cohort study. Lancet Microbe. 2023;4:e97282. DOIPubMedGoogle Scholar
  16. Koul  A, Dendouga  N, Vergauwen  K, Molenberghs  B, Vranckx  L, Willebrords  R, et al. Diarylquinolines target subunit c of mycobacterial ATP synthase. Nat Chem Biol. 2007;3:3234. DOIPubMedGoogle Scholar
  17. Mallick  JS, Nair  P, Abbew  ET, Van Deun  A, Decroo  T. Acquired bedaquiline resistance during the treatment of drug-resistant tuberculosis: a systematic review. JAC Antimicrob Resist. 2022;4:dlac029. DOIPubMedGoogle Scholar
  18. World Health Organization. Catalogue of mutations in Mycobacterium tuberculosis complex and their association with drug resistance. 2nd edition. Geneva: The Organization: 2023.
  19. Vargas  R Jr, Freschi  L, Spitaleri  A, Tahseen  S, Barilar  I, Niemann  S, et al. Role of epistasis in amikacin, kanamycin, bedaquiline, and clofazimine resistance in Mycobacterium tuberculosis complex. Antimicrob Agents Chemother. 2021;65:e0116421. DOIPubMedGoogle Scholar
  20. World Health Organization. Technical report on critical concentrations for drug susceptibility testing of medicines used in the treatment of drug-resistant tuberculosis. Geneva: The Organization; 2018.
  21. The CRyPTIC Consortium. A data compendium associating the genomes of 12,289 Mycobacterium tuberculosis isolates with quantitative resistance phenotypes to 13 antibiotics. PLoS Biol. 2022;20:e3001721. DOIPubMedGoogle Scholar
  22. Radhakrishnan  A, Kumar  N, Wright  CC, Chou  TH, Tringides  ML, Bolla  JR, et al. Crystal structure of the transcriptional regulator Rv0678 of Mycobacterium tuberculosis. J Biol Chem. 2014;289:1652640. DOIPubMedGoogle Scholar
  23. Beckert  P, Hillemann  D, Kohl  TA, Kalinowski  J, Richter  E, Niemann  S, et al. rplC T460C identified as a dominant mutation in linezolid-resistant Mycobacterium tuberculosis strains. Antimicrob Agents Chemother. 2012;56:27435. DOIPubMedGoogle Scholar
  24. Martinez  E, Hennessy  D, Jelfs  P, Crighton  T, Chen  SCA, Sintchenko  V. Mutations associated with in vitro resistance to bedaquiline in Mycobacterium tuberculosis isolates in Australia. Tuberculosis (Edinb). 2018;111:314. DOIPubMedGoogle Scholar
  25. Mokrousov  I, Akhmedova  G, Molchanov  V, Fundovnaya  E, Kozlova  E, Ostankova  Y, et al. Frequent acquisition of bedaquiline resistance by epidemic extensively drug-resistant Mycobacterium tuberculosis strains in Russia during long-term treatment. Clin Microbiol Infect. 2021;27:47880. DOIPubMedGoogle Scholar
  26. Chesov  E, Chesov  D, Maurer  FP, Andres  S, Utpatel  C, Barilar  I, et al. Emergence of bedaquiline resistance in a high tuberculosis burden country. Eur Respir J. 2022;59:2100621. DOIPubMedGoogle Scholar
  27. Ghodousi  A, Hussain Rizvi  A, Khanzada  FM, Akhtar  N, Ghafoor  A, Trovato  A, et al. In vivo microevolution of Mycobacterium tuberculosis and transient emergence of atpE_Ala63Pro mutation during treatment in a pre-XDR TB patient. Eur Respir J. 2022;59:2102102. DOIPubMedGoogle Scholar
  28. Le Ray  LF, Aubry  A, Sougakoff  W, Revest  M, Robert  J, Bonnet  I, et al. atpE mutation in Mycobacterium tuberculosis not always predictive of bedaquiline treatment failure. Emerg Infect Dis. 2022;28:10624. DOIPubMedGoogle Scholar
  29. Shang  Y, Chen  S, Shi  W, Nie  W, Jing  W, Huo  F, et al. Bedaquiline resistance pattern in clofazimine-resistant clinical isolates of tuberculosis patients. J Glob Antimicrob Resist. 2023;33:294300. DOIPubMedGoogle Scholar
  30. Umpeleva  T, Chetverikova  E, Belyaev  D, Eremeeva  N, Boteva  T, Golubeva  L, et al. Identification of genetic determinants of bedaquiline resistance in Mycobacterium tuberculosis in Ural region, Russia. Microbiol Spectr. 2024;12:e0374923. DOIPubMedGoogle Scholar
  31. Peng  Y, Li  C, Hui  X, Huo  X, Shumuyed  NA, Jia  Z. Phenotypic and genotypic analysis of drug resistance in M. tuberculosis isolates in Gansu, China. PLoS One. 2024;19:e0311042. DOIPubMedGoogle Scholar
  32. Köser  CU, Miotto  P, Ismail  N, Anthony  RM, Utpatel  C, Merker  M, et al. A composite reference standard is needed for bedaquiline antimicrobial susceptibility testing for Mycobacterium tuberculosis complex. Eur Respir J. 2024;64:2400391. DOIPubMedGoogle Scholar
  33. Zhu  C, Yang  T, Yin  J, Jiang  H, Takiff  HE, Gao  Q, et al. The global success of Mycobacterium tuberculosis modern Beijing family is driven by a few recently emerged strains. Microbiol Spectr. 2023;11:e0333922. DOIPubMedGoogle Scholar
  34. Vyazovaya  A, Gerasimova  A, Mudarisova  R, Terentieva  D, Solovieva  N, Zhuravlev  V, et al. Genetic diversity and primary drug resistance of Mycobacterium tuberculosis Beijing genotype strains in northwestern Russia. Microorganisms. 2023;11:255. DOIPubMedGoogle Scholar
  35. Kadura  S, King  N, Nakhoul  M, Zhu  H, Theron  G, Köser  CU, et al. Systematic review of mutations associated with resistance to the new and repurposed Mycobacterium tuberculosis drugs bedaquiline, clofazimine, linezolid, delamanid and pretomanid. J Antimicrob Chemother. 2020;75:203143. DOIPubMedGoogle Scholar
  36. Wu  SH, Chan  HH, Hsiao  HC, Jou  R. Primary bedaquiline resistance among cases of drug-resistant tuberculosis in Taiwan. Front Microbiol. 2021;12:754249. DOIPubMedGoogle Scholar
  37. Shi  J, Liu  Y, Wu  T, Li  L, Han  S, Peng  X, et al. Spontaneous mutational patterns and novel mutations for bedaquiline and clofazimine resistance in Mycobacterium tuberculosis. Microbiol Spectr. 2023;11:e0009023. DOIPubMedGoogle Scholar
  38. Maharjan  R, Zhang  Z, Klenotic  PA, Gregor  WD, Tringides  ML, Cui  M, et al. Structures of the mycobacterial MmpL4 and MmpL5 transporters provide insights into their role in siderophore export and iron acquisition. PLoS Biol. 2024;22:e3002874. DOIPubMedGoogle Scholar
  39. Yamamoto  K, Nakata  N, Mukai  T, Kawagishi  I, Ato  M. Coexpression of MmpS5 and MmpL5 contributes to both efflux transporter MmpL5 trimerization and drug resistance in Mycobacterium tuberculosis. MSphere. 2021;6:e0051820. DOIPubMedGoogle Scholar
  40. Meikle  V, Zhang  L, Niederweis  M. Intricate link between siderophore secretion and drug efflux in Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2023;67:e0162922. DOIPubMedGoogle Scholar
  41. Zhang  Y, Lai  Y, Zhou  S, Ran  T, Zhang  Y, Zhao  Z, et al. Inhibition of M. tuberculosis and human ATP synthase by BDQ and TBAJ-587. Nature. 2024;631:40914. DOIPubMedGoogle Scholar
  42. Awasthy  D, Bharath  S, Subbulakshmi  V, Sharma  U. Alanine racemase mutants of Mycobacterium tuberculosis require D-alanine for growth and are defective for survival in macrophages and mice. Microbiology (Reading). 2012;158:31927. DOIPubMedGoogle Scholar
  43. Coll  F, Phelan  J, Hill-Cawthorne  GA, Nair  MB, Mallard  K, Ali  S, et al. Genome-wide analysis of multi- and extensively drug-resistant Mycobacterium tuberculosis. Nat Genet. 2018;50:30716. DOIPubMedGoogle Scholar
  44. Chen  J, Zhang  S, Cui  P, Shi  W, Zhang  W, Zhang  Y. Identification of novel mutations associated with cycloserine resistance in Mycobacterium tuberculosis. J Antimicrob Chemother. 2017;72:32726. DOIPubMedGoogle Scholar
  45. Hurtado-Páez  U, Álvarez Zuluaga  N, Arango Isaza  RE, Contreras-Moreira  B, Rouzaud  F, Robledo  J. Pan-genome association study of Mycobacterium tuberculosis lineage-4 revealed specific genes related to the high and low prevalence of the disease in patients from the North-Eastern area of Medellín, Colombia. Front Microbiol. 2023;13:1076797. DOIPubMedGoogle Scholar
  46. Thiede  JM, Dillon  NA, Howe  MD, Aflakpui  R, Modlin  SJ, Hoffner  SE, et al. Pyrazinamide susceptibility is driven by activation of the SigE-dependent cell envelope stress response in Mycobacterium tuberculosis. MBio. 2021;13:e0043921. DOIPubMedGoogle Scholar
  47. Vilchèze  C, Jacobs  WR. Resistance to isoniazid and ethionamide in Mycobacterium tuberculosis: genes, mutations, and causalities. Microbiol Spectr. 2014;2:MGM2–0014–2013.
  48. Dutta  NK, Mehra  S, Didier  PJ, Roy  CJ, Doyle  LA, Alvarez  X, et al. Genetic requirements for the survival of tubercle bacilli in primates. J Infect Dis. 2010;201:174352. DOIPubMedGoogle Scholar
  49. Salina  EG, Waddell  SJ, Hoffmann  N, Rosenkrands  I, Butcher  PD, Kaprelyants  AS. Potassium availability triggers Mycobacterium tuberculosis transition to, and resuscitation from, non-culturable (dormant) states. Open Biol. 2014;4:140106. DOIPubMedGoogle Scholar
  50. Alffenaar  JC, de Steenwinkel  JEM, Diacon  AH, Simonsson  USH, Srivastava  S, Wicha  SG. Pharmacokinetics and pharmacodynamics of anti-tuberculosis drugs: An evaluation of in vitro, in vivo methodologies and human studies. Front Pharmacol. 2022;13:1063453. DOIPubMedGoogle Scholar

Main Article

Page created: January 06, 2025
Page updated: February 28, 2025
Page reviewed: February 28, 2025
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external