Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 22, Number 8—August 2016
Research

Virulence and Evolution of West Nile Virus, Australia, 1960–2012

Natalie A. Prow12, Judith H. Edmonds2, David T. Williams, Yin X. Setoh, Helle Bielefeldt-Ohmann, Willy W. Suen, Jody Hobson-Peters, Andrew F. van den Hurk, Alyssa T. Pyke, Sonja Hall-Mendelin, Judith A. Northill, Cheryl A. Johansen, David Warrilow, Jianning Wang, Peter D. Kirkland, Stephen Doggett, Christy C. Andrade3, Aaron C. Brault, Alexander A. Khromykh4Comments to Author , and Roy A. Hall4Comments to Author 
Author affiliations: The University of Queensland, St. Lucia, Queensland, Australia (N.A. Prow, J.H. Edmonds, Y.X. Setoh, H. Bielefeldt-Ohmann, W.W. Suen, J. Hobson-Peters, A.A. Khromykh, R.A. Hall); CSIRO Australian Animal Health Laboratory, Geelong, Victoria, Australia (D.T. Williams, J. Wang); The University of Queensland, Gatton, Queensland, Australia (H. Bielefeldt-Ohmann, W.W. Suen); Department of Health, Brisbane, Queensland, Australia (A.F. van den Hurk, A.T. Pyke, S. Hall-Mendelin, J.A. Northill, D. Warrilow); The University of Western Australia, Nedlands, Western Australia, Australia (C.A. Johansen); Elizabeth Macarthur Agriculture Institute, Menangle, New South Wales, Australia (P.D. Kirkland); University of Sydney and Pathology West–ICPMR, Westmead, New South Wales, Australia (S. Doggett); University of California, Davis, California, USA (C.C. Andrade, A.C. Brault); Centers for Disease Control and Prevention, Fort Collins, Colorado, USA (C.C. Andrade, A.C. Brault)

Main Article

Table 3

Amino acid sequences in the West Nile virus genome*

WNV strain
Year of isolation
prM, residue 22/72†
Putative virulence determinant
NS5, residue 49
3′ UTR residues 64–71
E protein, residues 154–156‡
NS3, residue 249§
NS5, residue 653¶
NY99 1999 Val/Ser Asn-Tyr-Ser (NYS) Pro Phe Val Present
KUN1960 1960 Ile/Leu Asn-Tyr-Phe (NYF) Ala Ser Ile Present
Boort 1984 Ile/Leu Asn-Tyr-Ser (NYS) Ala Phe Ile Present
K2499 1984 Ile/Leu Asn-Tyr-Ser (NYS) Ala Phe Ile Present
K6453 1991 Ile/Leu Asn-Tyr-Ser (NYS) Ala Phe Ile Present
Hu6774 1991 Ile/Leu Asn-Tyr-Ser (NYS) Ala Phe Ile Present
Gu0631 2000 Ile/Leu Asn-Tyr-Ser (NYS) Ala Phe Ile Present
Gu1009 2000 Ile/Leu Asn-Tyr-Ser (NYS) Ala Phe Ile Absent
K68967 2009 Ile/Leu Asn-Tyr-Ser (NYS) Ala Phe Val Absent
P9974 2009 Ile/Leu Asn-Tyr-Ser (NYS) Ala Phe Val Absent
NSW2011 2011 Ile/Leu Asn-Tyr-Ser (NYS) Ala Phe Val Absent
K74015 2011 Ile/Leu Asn-Tyr-Ser (NYS) Ala Phe Val Absent
NSW2012 2012 Ile/Leu Asn-Tyr-Ser (NYS) Ala Phe Val Absent

*E, envelope; NS, nonstructural; prM, premembrane; UTR, untranslated region.
†(11).
‡(7).
§(25).
¶(10).

Main Article

References
  1. Murgue  B, Zeller  H, Deubel  V. The ecology and epidemiology of West Nile virus in Africa, Europe and Asia. Curr Top Microbiol Immunol. 2002;267:195221. DOIPubMedGoogle Scholar
  2. Lanciotti  RS, Roehrig  JT, Deubel  V, Smith  J, Parker  M, Steele  K, Origin of the West Nile virus responsible for an outbreak of encephalitis in the northeastern United States. Science. 1999;286:23337. DOIPubMedGoogle Scholar
  3. Frost  MJ, Zhang  J, Edmonds  JH, Prow  NA, Gu  X, Davis  R, Characterization of virulent West Nile virus Kunjin strain, Australia, 2011. Emerg Infect Dis. 2012;18:792800. DOIPubMedGoogle Scholar
  4. Roche  SE, Wicks  R, Garner  MG, East  IJ, Paskin  R, Moloney  BJ, Descriptive overview of the 2011 epidemic of arboviral disease in horses in Australia. Aust Vet J. 2013;91:513. DOIPubMedGoogle Scholar
  5. Adams  SC, Broom  AK, Sammels  LM, Hartnett  AC, Howard  MJ, Coelen  RJ, Glycosylation and antigenic variation among Kunjin virus isolates. Virology. 1995;206:4956. DOIPubMedGoogle Scholar
  6. Audsley  M, Edmonds  JH, Liu  W, Mokhonov  V, Mokhonova  E, Melian  EB, Virulence determinants between New York 99 and Kunjin strains of West Nile virus. Virology. 2011;414:6373. DOIPubMedGoogle Scholar
  7. Beasley  DW, Whiteman  MC, Zhang  S, Huang  CY, Schneider  BS, Smith  DR, Envelope protein glycosylation status influences mouse neuroinvasion phenotype of genetic lineage 1 West Nile virus strains. J Virol. 2005;79:833947. DOIPubMedGoogle Scholar
  8. Daffis  S, Lazear  HM, Liu  WJ, Audsley  M, Engle  M, Khromykh  AA, The naturally attenuated Kunjin strain of West Nile virus shows enhanced sensitivity to the host type I interferon response. J Virol. 2011;85:56648 .DOIPubMedGoogle Scholar
  9. Keller  BC, Fredericksen  BL, Samuel  MA, Mock  RE, Mason  PW, Diamond  MS, Resistance to alpha/beta interferon is a determinant of West Nile virus replication fitness and virulence. J Virol. 2006;80:942434. DOIPubMedGoogle Scholar
  10. Laurent-Rolle  M, Boer  EF, Lubick  KJ, Wolfinbarger  JB, Carmody  AB, Rockx  B, The NS5 protein of the virulent West Nile virus NY99 strain is a potent antagonist of type I interferon-mediated JAK-STAT signaling. J Virol. 2010;84:350315. DOIPubMedGoogle Scholar
  11. Setoh  YX, Prow  NA, Hobson-Peters  J, Lobigs  M, Young  PR, Khromykh  AA, Identification of residues in West Nile virus pre-membrane protein that influence viral particle secretion and virulence. J Gen Virol. 2012;93:196575. DOIPubMedGoogle Scholar
  12. Doherty  RL, Carley  JG. Studies of arthropod-borne virus infections in Queensland. II. Serological investigations of antibodies to dengue and Murray Valley encephalitis in eastern Queensland. Aust J Exp Biol Med Sci. 1960;38:42739. DOIPubMedGoogle Scholar
  13. Khromykh  AA, Kenney  MT, Westaway  EG. Trans-complementation of flavivirus RNA polymerase gene NS5 by using Kunjin virus replicon–expressing BHK cells. J Virol. 1998;72:72709.PubMedGoogle Scholar
  14. Westaway  EG. Assessment and application of a cell line from pig kidney for plaque assay and neutralization tests with twelve group B arboviruses. Am J Epidemiol. 1966;84:43956.PubMedGoogle Scholar
  15. Hall  RA, Tan  SE, Selisko  B, Slade  R, Hobson-Peters  J, Canard  B, Monoclonal antibodies to the West Nile virus NS5 protein map to linear and conformational epitopes in the methyltransferase and polymerase domains. J Gen Virol. 2009;90:291222. DOIPubMedGoogle Scholar
  16. Wang  GP, Bushman  FD. A statistical method for comparing viral growth curves. J Virol Methods. 2006;135:11823. DOIPubMedGoogle Scholar
  17. Warrilow  D, Hall-Mendelin  S, Hobson-Peters  J, Prow  NA, Allcock  R, Hall  RA. Complete coding sequences of three members of the kokobera group of flaviviruses. Genome Announc. 2014;2:e0089014.DOIPubMedGoogle Scholar
  18. Palacios  G, Quan  PL, Jabado  OJ, Conlan  S, Hirschberg  DL, Liu  Y, Panmicrobial oligonucleotide array for diagnosis of infectious diseases. Emerg Infect Dis. 2007;13:7381. DOIPubMedGoogle Scholar
  19. Tamura  K, Stecher  G, Peterson  D, Filipski  A, Kumar  S. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol. 2013;30:27259. DOIPubMedGoogle Scholar
  20. Guindon  S, Gascuel  O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol. 2003;52:696704. DOIPubMedGoogle Scholar
  21. Darriba  D, Taboada  GL, Doallo  R, Posada  D. jModelTest 2: more models, new heuristics and parallel computing. Nat Methods. 2012;9:772. DOIPubMedGoogle Scholar
  22. Hall  RA, Kay  BH, Burgess  GW, Clancy  P, Fanning  ID. Epitope analysis of the envelope and non-structural glycoproteins of Murray Valley encephalitis virus. J Gen Virol. 1990;71:292330. DOIPubMedGoogle Scholar
  23. Hobson-Peters  J, Toye  P, Sanchez  MD, Bossart  KN, Wang  LF, Clark  DC, A glycosylated peptide in the West Nile virus envelope protein is immunogenic during equine infection. J Gen Virol. 2008;89:306372. DOIPubMedGoogle Scholar
  24. Scherret  JH, Poidinger  M, Mackenzie  JS, Broom  AK, Deubel  V, Lipkin  WI, The relationships between West Nile and Kunjin viruses. Emerg Infect Dis. 2001;7:697705. DOIPubMedGoogle Scholar
  25. Brault  AC, Huang  CY, Langevin  SA, Kinney  RM, Bowen  RA, Ramey  WN, A single positively selected West Nile viral mutation confers increased virogenesis in American crows. Nat Genet. 2007;39:11626. DOIPubMedGoogle Scholar
  26. Tan  CS, Hobson-Peters  JM, Stoermer  MJ, Fairlie  DP, Khromykh  AA, Hall  RA. An interaction between the methyltransferase and RNA dependent RNA polymerase domains of the West Nile virus NS5 protein. J Gen Virol. 2013;94:196171. DOIPubMedGoogle Scholar
  27. Prow  NA, Setoh  YX, Biron  RM, Sester  DP, Kim  KS, Hobson-Peters  J, The West Nile virus-like flavivirus Koutango is highly virulent in mice due to delayed viral clearance and the induction of a poor neutralizing antibody response. J Virol. 2014;88:994762. DOIPubMedGoogle Scholar
  28. Wright  PJ, Warr  HM, Westaway  EG. Synthesis of glycoproteins in cells infected by the flavivirus Kunjin. Virology. 1981;109:41827. DOIPubMedGoogle Scholar
  29. Hall-Mendelin  S, Ritchie  SA, Johansen  CA, Zborowski  P, Cortis  G, Dandridge  S, Exploiting mosquito sugar feeding to detect mosquito-borne pathogens. Proc Natl Acad Sci U S A. 2010;107:112559. DOIPubMedGoogle Scholar
  30. van den Hurk  AF, Hall-Mendelin  S, Townsend  M, Kurucz  N, Edwards  J, Ehlers  G, Applications of a sugar-based surveillance system to track arboviruses in wild mosquito populations. Vector Borne Zoonotic Dis. 2014;14:6673. DOIPubMedGoogle Scholar
  31. Badman  R, Campbell  J, Aldred  J. Arbovirus infection in horses—Victoria. Commun Dis Intell. 1984;17:56.
  32. Bingham  J, Payne  J, Harper  J, Frazer  L, Eastwood  S, Wilson  S, Evaluation of a mouse model for the West Nile virus group for the purpose of determining viral pathotypes. J Gen Virol. 2014;95:122132. DOIPubMedGoogle Scholar
  33. van den Hurk  AF, Nisbet  DJ, Foley  PN, Ritchie  SA, Mackenzie  JS, Beebe  NW. Isolation of arboviruses from mosquitoes (Diptera: Culicidae) collected from the Gulf Plains region of northwest Queensland, Australia. J Med Entomol. 2002;39:78692. DOIPubMedGoogle Scholar
  34. Prow  NA. The changing epidemiology of Kunjin virus in Australia. Int J Environ Res Public Health. 2013;10:625572. DOIPubMedGoogle Scholar
  35. Coffey  LL, Forrester  N, Tsetsarkin  K, Vasilakis  N, Weaver  SC. Factors shaping the adaptive landscape for arboviruses: implications for the emergence of disease. Future Microbiol. 2013;8:15576. DOIPubMedGoogle Scholar
  36. Duggal  NK, D’Anton  M, Xiang  J, Seiferth  R, Day  J, Nasci  R, Sequence analyses of 2012 West Nile virus isolates from Texas fail to associate viral genetic factors with outbreak magnitude. Am J Trop Med Hyg. 2013;89:20510. DOIPubMedGoogle Scholar
  37. van den Hurk  AF, Hall-Mendelin  S, Webb  CE, Tan  CS, Frentiu  FD, Prow  NA, Role of enhanced vector transmission of a new West Nile virus strain in an outbreak of equine disease in Australia in 2011. Parasit Vectors. 2014;7:586.DOIPubMedGoogle Scholar

Main Article

1Current affiliation: QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia.

2These authors contributed equally to the major technical aspects of the work.

3Current affiliation: Willamette University, Salem, Oregon, USA.

4These authors served as joint senior authors.

Page created: July 15, 2016
Page updated: July 15, 2016
Page reviewed: July 15, 2016
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external