Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 23, Number 2—February 2017

Swine Influenza Virus (H1N2) Characterization and Transmission in Ferrets, Chile

Nicolás Bravo-Vasquez1, Erik A. Karlsson1, Pedro Jimenez-Bluhm, Victoria Meliopoulos, Bryan Kaplan, Shauna Marvin, Valerie Cortez, Pamela Freiden, Melinda A. Beck, and Stacey Schultz-Cherry2Comments to Author 
Author affiliations: University of Chile, Santiago, Chile (N. Bravo-Vasquez, C. Hamilton-West); St. Jude Children’s Research Hospital, Memphis, Tennessee, USA (E.A. Karlsson, P. Jimenez-Bluhm, V. Meliopoulos, B. Kaplan, S. Marvin, V. Cortez, P. Freiden, S. Schultz-Cherry); University of North Carolina, Chapel Hill, North Carolina, USA (M.A. Beck)

Main Article

Figure 1

Phylogenetic trees showing comparison of swine influenza virus (H1N2) from Chile (red) and reference viruses. We performed phylogenetic analyses on complete hemagglutinin (A) and neuraminidase (B) genome sequences using RAxML with 200-bootstrap replicates (21). Blue indicates control H1 viruses. Scale bars indicate number of substitutions per site.

Figure 1. Phylogenetic trees showing comparison of swine influenza virus (H1N2) from Chile (red) and reference viruses. We performed phylogenetic analyses on complete hemagglutinin (A) and neuraminidase (B) genome sequences using RAxML with 200-bootstrap replicates (21). Blue indicates control H1 viruses. Scale bars indicate number of substitutions per site.

Main Article

  1. Komadina  N, McVernon  J, Hall  R, Leder  K. A historical perspective of influenza A(H1N2) virus. Emerg Infect Dis. 2014;20:612. DOIPubMedGoogle Scholar
  2. Centers for Disease Control and Prevention. Reported infections with variant influenza viruses in the United States since 2005. 2016 Sep 12 [cited 2016 Oct 10].
  3. Herriman  R. Swine flu, H1N2v virus infections reported in Wisconsin, Minnesota. 2016 Jul 1 [cited 2016 Oct 10].
  4. Centers for Disease Control and Prevention. Influenza A (H3N2) variant virus [cited 2016 Oct 6].
  5. Centers for Disease Control and Prevention. H1N2 variant virus detected in Minnesota. 2012 Sep 7 [cited 2016 Oct 6].
  6. Trombetta  C, Piccirella  S, Perini  D, Kistner  O, Montomoli  E. Emerging influenza strains in the last two decades: a threat of a new pandemic? Vaccines (Basel). 2015;3:17285. DOIPubMedGoogle Scholar
  7. Choi  MJ, Morin  CA, Scheftel  J, Vetter  SM, Smith  K, Lynfield  R; Variant Influenza Investigation Team. Variant influenza associated with live animal markets, Minnesota. Zoonoses Public Health. 2015;62:32630. DOIPubMedGoogle Scholar
  8. Dawood  FS, Jain  S, Finelli  L, Shaw  MW, Lindstrom  S, Garten  RJ, et al.; Novel Swine-Origin Influenza A (H1N1) Virus Investigation Team. Emergence of a novel swine-origin influenza A (H1N1) virus in humans. N Engl J Med. 2009;360:260515. DOIPubMedGoogle Scholar
  9. Nelson  M, Culhane  MR, Rovira  A, Torremorell  M, Guerrero  P, Norambuena  J. Novel human-like influenza A viruses circulate in swine in Mexico and Chile. PLoS Curr. 2015;7:7.PubMedGoogle Scholar
  10. Hamilton-West  C, Rojas  H, Pinto  J, Orozco  J, Hervé-Claude  LP, Urcelay  S. Characterization of backyard poultry production systems and disease risk in the central zone of Chile. Res Vet Sci. 2012;93:1214. DOIPubMedGoogle Scholar
  11. Bravo-Vasquez  N, Di Pillo  F, Lazo  A, Jiménez-Bluhm  P, Schultz-Cherry  S, Hamilton-West  C. Presence of influenza viruses in backyard poultry and swine in El Yali wetland, Chile. Prev Vet Med. 2016;134:2115. DOIPubMedGoogle Scholar
  12. Karlsson  EA, Ciuoderis  K, Freiden  PJ, Seufzer  B, Jones  JC, Johnson  J, et al. Prevalence and characterization of influenza viruses in diverse species in Los Llanos, Colombia. Emerg Microbes Infect. 2013;2:e20. DOIPubMedGoogle Scholar
  13. Fulcher  ML, Randell  SH. Human nasal and tracheo-bronchial respiratory epithelial cell culture. In: Randell HS, Fulcher LM, editors. Epithelial cell culture protocols, 2nd ed. Totowa (NJ): Humana Press; 2013. p. 109–21.
  14. Dash  P, Barnett  PV, Denyer  MS, Jackson  T, Stirling  CMA, Hawes  PC, et al. Foot-and-mouth disease virus replicates only transiently in well-differentiated porcine nasal epithelial cells. J Virol. 2010;84:914960. DOIPubMedGoogle Scholar
  15. Kaplan  BS, Russier  M, Jeevan  T, Marathe  B, Govorkova  EA, Russell  CJ, et al. Novel highly pathogenic avian A(H5N2) and A(H5N8) influenza viruses of clade from North America have limited capacity for replication and transmission in mammals. mSphere. 2016;1:piie00003-16. DOIPubMedGoogle Scholar
  16. Jones  JC, Turpin  EA, Bultmann  H, Brandt  CR, Schultz-Cherry  S. Inhibition of influenza virus infection by a novel antiviral peptide that targets viral attachment to cells. J Virol. 2006;80:119607. DOIPubMedGoogle Scholar
  17. Carlson  CM, Turpin  EA, Moser  LA, O’Brien  KB, Cline  TD, Jones  JC, et al. Transforming growth factor-β: activation by neuraminidase and role in highly pathogenic H5N1 influenza pathogenesis. PLoS Pathog. 2010;6:e1001136. DOIPubMedGoogle Scholar
  18. Hall  TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser. 1999;41:958.
  19. Edgar  RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:17927. DOIPubMedGoogle Scholar
  20. Bao  Y, Bolotov  P, Dernovoy  D, Kiryutin  B, Zaslavsky  L, Tatusova  T, et al. The influenza virus resource at the National Center for Biotechnology Information. J Virol. 2008;82:596601. DOIPubMedGoogle Scholar
  21. Stamatakis  A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:13123. DOIPubMedGoogle Scholar
  22. Sheridan  PA, Paich  HA, Handy  J, Karlsson  EA, Hudgens  MG, Sammon  AB, et al. Obesity is associated with impaired immune response to influenza vaccination in humans. Int J Obes. 2012;36:10727. DOIPubMedGoogle Scholar
  23. Karlsson  EA, Ip  HS, Hall  JS, Yoon  SW, Johnson  J, Beck  MA, et al. Respiratory transmission of an avian H3N8 influenza virus isolated from a harbour seal. Nat Commun. 2014;5:4791. DOIPubMedGoogle Scholar
  24. Cline  TD, Karlsson  EA, Freiden  P, Seufzer  BJ, Rehg  JE, Webby  RJ, et al. Increased pathogenicity of a reassortant 2009 pandemic H1N1 influenza virus containing an H5N1 hemagglutinin. J Virol. 2011;85:1226270. DOIPubMedGoogle Scholar
  25. Reed  LJ, Muench  H. A simple methods of estimating fifty percent endpoints. Am J Epidemiol. 1938;27:4937.
  26. Morton  DB. A systematic approach for establishing humane endpoints. ILAR J. 2000;41:806. DOIPubMedGoogle Scholar
  27. Zhou  B, Meliopoulos  VA, Wang  W, Lin  X, Stucker  KM, Halpin  RA, et al. Reversion of cold-adapted live attenuated influenza vaccine into a pathogenic virus. J Virol. 2016;90:845463. DOIPubMedGoogle Scholar
  28. Barman  S, Krylov  PS, Fabrizio  TP, Franks  J, Turner  JC, Seiler  P, et al. Pathogenicity and transmissibility of North American triple reassortant swine influenza A viruses in ferrets. PLoS Pathog. 2012;8:e1002791. DOIPubMedGoogle Scholar
  29. Nelson  MI, Wentworth  DE, Culhane  MR, Vincent  AL, Viboud  C, LaPointe  MP, et al. Introductions and evolution of human-origin seasonal influenza a viruses in multinational swine populations. J Virol. 2014;88:101109. DOIPubMedGoogle Scholar
  30. Suzuki  Y, Ito  T, Suzuki  T, Holland  RE Jr, Chambers  TM, Kiso  M, et al. Sialic acid species as a determinant of the host range of influenza A viruses. J Virol. 2000;74:1182531. DOIPubMedGoogle Scholar
  31. Ito  T, Couceiro  JNSS, Kelm  S, Baum  LG, Krauss  S, Castrucci  MR, et al. Molecular basis for the generation in pigs of influenza A viruses with pandemic potential. J Virol. 1998;72:736773.PubMedGoogle Scholar
  32. Yang  H, Chen  Y, Qiao  C, Xu  C, Yan  M, Xin  X, et al. Two different genotypes of H1N2 swine influenza virus isolated in northern China and their pathogenicity in animals. Vet Microbiol. 2015;175:22431. DOIPubMedGoogle Scholar
  33. Lee  JH, Pascua  PNQ, Decano  AG, Kim  SM, Park  S-J, Kwon  H-I, et al. Evaluation of the zoonotic potential of a novel reassortant H1N2 swine influenza virus with gene constellation derived from multiple viral sources. Infect Genet Evol. 2015;34:37893. DOIPubMedGoogle Scholar
  34. Fobian  K, Fabrizio  TP, Yoon  S-W, Hansen  MS, Webby  RJ, Larsen  LE. New reassortant and enzootic European swine influenza viruses transmit efficiently through direct contact in the ferret model. J Gen Virol. 2015;96:160312. DOIPubMedGoogle Scholar
  35. Nelson  MI, Schaefer  R, Gava  D, Cantão  ME, Ciacci-Zanella  JR. Influenza A viruses of human origin in swine, Brazil. Emerg Infect Dis. 2015;21:133947. DOIPubMedGoogle Scholar
  36. Peng  X, Wu  H, Xu  L, Peng  X, Cheng  L, Jin  C, et al. Molecular characterization of a novel reassortant H1N2 influenza virus containing genes from the 2009 pandemic human H1N1 virus in swine from eastern China. Virus Genes. 2016;52:40510. DOIPubMedGoogle Scholar
  37. Liu  H, Tao  J, Zhang  P, Yin  X, Ha  Z, Zhang  C. Pathogenic characteristics of a novel triple-reasserted H1N2 swine influenza virus. Biologicals. 2016;44:2526. DOIPubMedGoogle Scholar
  38. Pascua  PNQ, Song  M-S, Lee  JH, Baek  YH, Kwon  HI, Park  S-J, et al. Virulence and transmissibility of H1N2 influenza virus in ferrets imply the continuing threat of triple-reassortant swine viruses. Proc Natl Acad Sci U S A. 2012;109:159005. DOIPubMedGoogle Scholar

Main Article

1These first authors contributed equally to this article.

2These senior authors contributed equally to this article.

Page created: January 17, 2017
Page updated: January 17, 2017
Page reviewed: January 17, 2017
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.